343 research outputs found
The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2).
Cell number in the mouse thymus increases steadily during the first two weeks after birth. It then plateaus and begins to decline by seven weeks after birth. The factors governing these dramatic changes in cell production are not well understood. The data herein correlate levels of High mobility group A 2 protein (Hmga2) expression with these temporal changes in thymopoiesis. Hmga2 is expressed at high levels in murine fetal and neonatal early T cell progenitors (ETP), which are the most immature intrathymic precursors, and becomes almost undetectable in these progenitors after 5 weeks of age. Hmga2 expression is critical for the initial, exponential expansion of thymopoiesis, as Hmga2 deficient mice have a deficit of ETPs within days after birth, and total thymocyte number is repressed compared to wild type littermates. Finally, our data raise the possibility that similar events occur in humans, because Hmga2 expression is high in human fetal thymic progenitors and falls in these cells during early infancy
Nuclear structure-gene expression interrelationships: implications for aberrant gene expression in cancer
There is long-standing recognition that transformed and tumor cells exhibit striking alterations in nuclear morphology as well as in the representation and intranuclear distribution of nucleic acids and regulatory factors. Parameters of nuclear structure support cell growth and phenotypic properties of cells by facilitating the organization of genes, replication and transcription sites, chromatin remodeling complexes, transcripts, and regulatory factors in structurally and functionally definable subnuclear domains within the three-dimensional context of nuclear architecture. The emerging evidence for functional interrelationships of nuclear structure and gene expression is consistent with linkage of tumor-related modifications in nuclear organization to compromised gene regulation during the onset and progression of cancer
Epigenetic control of cell cycle-dependent histone gene expression is a principal component of the abbreviated pluripotent cell cycle
Self-renewal of human pluripotent embryonic stem cells proceeds via an abbreviated cell cycle with a shortened G(1) phase. We examined which genes are modulated in this abbreviated period and the epigenetic mechanisms that control their expression. Accelerated upregulation of genes encoding histone proteins that support DNA replication is the most prominent gene regulatory program at the G(1)/S-phase transition in pluripotent cells. Expedited expression of histone genes is mediated by a unique chromatin architecture reflected by major nuclease hypersensitive sites, atypical distribution of epigenetic histone marks, and a region devoid of histone octamers. We observed remarkable differences in chromatin structure--hypersensitivity and histone protein modifications--between human embryonic stem (hES) and normal diploid cells. Cell cycle-dependent transcription factor binding permits dynamic three-dimensional interactions between transcript initiating and processing factors at 5\u27 and 3\u27 regions of the gene. Thus, progression through the abbreviated G(1) phase involves cell cycle stage-specific chromatin-remodeling events and rapid assembly of subnuclear microenvironments that activate histone gene transcription to promote nucleosomal packaging of newly replicated DNA during stem cell renewal
The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes
RUNX1/AML1 is required for definitive hematopoiesis and is frequently targeted by chromosomal translocations in acute myeloid leukemia (AML). The t(8;21)-related AML1-ETO fusion protein blocks differentiation of myeloid progenitors. Here, we show by immunofluorescence microscopy that during interphase, endogenous AML1-ETO localizes to nuclear microenvironments distinct from those containing native RUNX1/AML1 protein. At mitosis, we clearly detect binding of AML1-ETO to nucleolar-organizing regions in AML-derived Kasumi-1 cells and binding of RUNX1/AML1 to the same regions in Jurkat cells. Both RUNX1/AML1 and AML1-ETO occupy ribosomal DNA repeats during interphase, as well as interact with the endogenous RNA Pol I transcription factor UBF1. Promoter cytosine methylation analysis indicates that RUNX1/AML1 binds to rDNA repeats that are more highly CpG methylated than those bound by AML1-ETO. Downregulation by RNA interference reveals that RUNX1/AML1 negatively regulates rDNA transcription, whereas AML1-ETO is a positive regulator in Kasumi-1 cells. Taken together, our findings identify a novel role for the leukemia-related AML1-ETO protein in epigenetic control of cell growth through upregulation of ribosomal gene transcription mediated by RNA Pol I, consistent with the hyper-proliferative phenotype of myeloid cells in AML patients
Intranuclear trafficking: organization and assembly of regulatory machinery for combinatorial biological control
The molecular logistics of nuclear regulatory processes necessitate temporal and spatial regulation of protein-protein and protein-DNA interactions in response to physiological cues. Biochemical, in situ, and in vivo genetic evidence demonstrates the requirement for intranuclear localization of regulatory complexes that functionally couple cellular responses to signals that mediate combinatorial control of gene expression. We have summarized evidence that subnuclear targeting of transcription factors mechanistically links gene expression with architectural organization and assembly of nuclear regulatory machinery for biological control. The compromised intranuclear targeting of regulatory proteins under pathological conditions provides options for the diagnosis and treatment of disease
Protein arginine methyltransferases PRMT1, PRMT4/CARM1 and PRMT5 have distinct functions in control of osteoblast differentiation
Osteogenic differentiation of mesenchymal cells is controlled by epigenetic enzymes that regulate post-translational modifications of histones. Compared to acetyl or methyltransferases, the physiological functions of protein arginine methyltransferases (PRMTs) in osteoblast differentiation remain minimally understood. Therefore, we surveyed the expression and function of all nine mammalian PRMT members during osteoblast differentiation. RNA-seq gene expression profiling shows that Prmt1, Prmt4/Carm1 and Prmt5 represent the most prominently expressed PRMT subtypes in mouse calvarial bone and MC3T3 osteoblasts as well as human musculoskeletal tissues and mesenchymal stromal cells (MSCs). Based on effects of siRNA depletion, it appears that PRMT members have different functional effects: (i) loss of Prmt1 stimulates and (ii) loss of Prmt5 decreases calcium deposition of mouse MC3T3 osteoblasts, while (iii) loss of Carm1 is inconsequential for calcium deposition. Decreased Prmt5 suppresses expression of multiple genes involved in mineralization (e.g., Alpl, Ibsp, Phospho1) consistent with a positive role in osteogenesis. Depletion of Prmt1, Carm1 and Prmt5 has intricate but modest time-dependent effects on the expression of a panel of osteoblast differentiation and proliferation markers but does not change mRNA levels for select epigenetic regulators (e.g., Ezh1, Ezh2, Brd2 and Brd4). Treatment with the Class I PRMT inhibitor GSK715 enhances extracellular matrix mineralization of MC3T3 cells, while blocking formation of H3R17me2a but not H4R3me2a marks. In sum, Prmt1, Carm1 and Prmt5 have distinct biological roles during osteoblast differentiation, and different types histone H3 and H4 arginine methylation may contribute to the chromatin landscape during osteoblast differentiation.</p
Nuclear microenvironments: an architectural platform for the convergence and integration of transcriptional regulatory signals
Functional interrelationships between the intranuclear organization of nucleic acids and regulatory proteins are obligatory for fidelity of transcriptional activation and repression. In this article, using the Runx/AML/Cbfa transcription factors as a paradigm for linkage between nuclear structure and gene expression we present an overview of growing insight into the dynamic organization and assembly of regulatory machinery for gene expression at microenvironments within the nucleus. We address contributions of nuclear microenvironments to the convergence and integration of regulatory signals that mediate transcription by supporting the combinatorial assembly of regulatory complexes
Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides)
Multihost infectious disease outbreaks have endangered wildlife, causing extinction of frogs and endemic birds, and widespread declines of bats, corals, and abalone. Since 2013, a sea star wasting disease has affected > 20 sea star species from Mexico to Alaska. The common, predatory sunflower star (Pycnopodia helianthoides), shown to be highly susceptible to sea star wasting disease, has been extirpated across most of its range. Diver surveys conducted in shallow nearshore waters (n = 10,956; 2006-2017) from California to Alaska and deep offshore (55 to 1280 m) trawl surveys from California to Washington (n = 8968; 2004-2016) reveal 80 to 100% declines across a similar to 3000-km range. Furthermore, timing of peak declines in nearshore waters coincided with anomalously warm sea surface temperatures. The rapid, widespread decline of this pivotal subtidal predator threatens its persistence and may have large ecosystem-level consequences
Obesity is not associated with disease-free interval, melanoma-specific survival, or overall survival in patients with clinical stage IB-II melanoma after SLNB
BACKGROUND AND OBJECTIVES: Clinicopathologic characteristics have prognostic value in clinical stage IB‐II patients with melanoma. Little is known about the prognostic value of obesity that has been associated with an increased risk for several cancer types and worsened prognosis after diagnosis. This study aims to examine effects of obesity on outcome in patients with clinical stage IB‐II melanoma. METHODS: Prospectively recorded data of patients with clinical stage IB‐II melanoma who underwent sentinel lymph node biopsy (SLNB) between 1995 and 2018 at the University Medical Center of Groningen were collected from medical files and retrospectively analyzed. Cox‐regression analyses were used to determine associations between obesity (body mass index> 30), tumor (location, histology, Breslow‐thickness, ulceration, mitotic rate, SLN‐status) and patient‐related variables (gender, age, and social‐economic‐status [SES]) and disease‐free interval (DFI), melanoma‐specific survival (MSS), and overall survival (OS). RESULTS: Of the 715 patients, 355 (49.7%) were women, median age was 55 (range 18.6‐89) years, 149 (20.8%) were obese. Obesity did not significantly affect DFI (adjusted hazard ratio [HR] = 1.40; 95% confidence interval [CI] = 0.98–2.00; p = 0.06), MSS (adjusted HR = 1.48;95%CI = 0.97–2.25; p = 0.07), and OS (adjusted HR = 1.25; 95% CI = 0.85–1.85; p = 0.25). Increased age, arm location, increased Breslow‐thickness, ulceration, increased mitotic rate, and positive SLN‐status were significantly associated with decreased DFI, MSS, and OS. Histology, sex, and SES were not associated. CONCLUSION: Obesity was not associated with DFI, MSS, or OS in patients with clinical stage IB‐II melanoma who underwent SLNB
Essential role of HDAC6 in the regulation of PD-L1 in melanoma
Indexación: Web of Science; Scopus.Histone deacetylases (HDACs), originally described as histone modifiers, have more recently been deMonstrated to target a variety of other proteins unrelated to the chromatin environment. In this context, our present work demonstrates that the pharmacological or genetic abrogation of HDAC6 in primary melanoma samples and cell lines, down-regulates the expression of PD-L1, an important co-stimulatory molecule expressed in cancer cells, which activates the inhibitory regulatory pathway PD-1 in T-cells. Our data suggests that this novel mechanism of PD-L1 regulation is mainly mediated by the influence of HDAC6 over the recruitment and activation of STAT3. Additionally, we observed that selective HDAC6 inhibitors impairs tumor growth and reduce the in vim expression of several inhibitory checkpoint molecules and other regulatory pathways involved in immunosurveillance. Most importantly, these results provide a key pre-clinical rationale and justification to further study isotype selective HDAC6 inhibitors as potential immuno-modulatory agents in cancer. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.http://onlinelibrary.wiley.com/doi/10.1016/j.molonc.2015.12.012/abstract;jsessionid=DB86CF943DA7FD358A75C2CEEAD4D7C4.f03t0
- …