16,305 research outputs found
Practical dispersion relations for strongly coupled plasma fluids
Very simple explicit analytical expressions are discussed, which are able to
describe the dispersion relations of longitudinal waves in strongly coupled
plasma systems such as one-component plasma and weakly screened Yukawa fluids
with a very good accuracy. Applications to other systems with soft pairwise
interactions are briefly discussed.Comment: 11 pages, 3 figures; Related to arXiv:1711.0615
Statistical Description of Hydrodynamic Processes in Ionic Melts with taking into account Polarization Effects
Statistical description of hydrodynamic processes for ionic melts is proposed
with taking into account polarization effects caused by the deformation of
external ionic shells. This description is carried out by means of the Zubarev
nonequilibrium statistical operator method, appropriate for investigations of
both strong and weak nonequilibrium processes. The nonequilibrium statistical
operator and the generalized hydrodynamic equations that take into account
polarization processes are received for ionic-polarization model of ionic
molten salts when the nonequilibrium averaged values of densities of ions
number, their momentum, dipole momentum and total energy are chosen for the
reduced description parameters. A spectrum of collective excitations is
investigated within the viscoelastic approximation for ion-polarization model
of ionic melts.Comment: 24 pages, RevTex4.1-format, no figure
Integral equation for inhomogeneous condensed bosons generalizing the Gross-Pitaevskii differential equation
We give here the derivation of a Gross-Pitaevskii--type equation for
inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii
differential equation, we obtain an integral equation that implies less
restrictive assumptions than are made in the very recent study of Pieri and
Strinati [Phys. Rev. Lett. 91 (2003) 030401]. In particular, the Thomas-Fermi
approximation and the restriction to small spatial variations of the order
parameter invoked in their study are avoided.Comment: Phys. Rev. A (accepted
Power, norms and institutional change in the European Union: the protection of the free movement of goods
How do institutions of the European Union change? Using an institutionalist approach, this article highlights the interplay between power, cognitive limits, and the normative order that underpins institutional settings and assesses their impact upon the process of institutional change. Empirical evidence from recent attempts to reinforce the protection of the free movement of goods in the EU suggests that, under conditions of uncertainty, actors with ambiguous preferences assess attempts at institutional change on the basis of the historically defined normative order which holds a given institutional structure together. Hence, path dependent and incremental change occurs even when more ambitious and functionally superior proposals are on offer
Pressure-induced phase transitions and high-pressure tetragonal phase of Fe1.08Te
We report the effects of hydrostatic pressure on the temperature-induced
phase transitions in Fe1.08Te in the pressure range 0-3 GPa using synchrotron
powder x-ray diffraction (XRD). The results reveal a plethora of phase
transitions. At ambient pressure, Fe1.08Te undergoes simultaneous first-order
structural symmetry-breaking and magnetic phase transitions, namely from the
paramagnetic tetragonal (P4/nmm) to the antiferromagnetic monoclinic (P2_1/m)
phase. We show that, at a pressure of 1.33 GPa, the low temperature structure
adopts an orthorhombic symmetry. More importantly, for pressures of 2.29 GPa
and higher, a symmetry-conserving tetragonal-tetragonal phase transition has
been identified from a change in the c/a ratio of the lattice parameters. The
succession of different pressure and temperature-induced structural and
magnetic phases indicates the presence of strong magneto-elastic coupling
effects in this material.Comment: 11 page
- …
