56 research outputs found

    In vitro irradiation station for broad beam radiobiological experiments

    Get PDF
    The study of the interaction of charged particles with living matter is of prime importance to the fields of radiotherapy, radioprotection and space radiobiology. Particle accelerators and their associated equipment are proven to be helpful tools in performing basic science in all these fields. Indeed, they can accelerate virtually any ions to a given energy and flux and let them interact with living matter either in vivo or in vitro. In this context, the University of Namur has developed a broad beam in vitro irradiation station for use in radiobiological experiments. Cells are handled in GLP conditions and can be irradiated at various fluxes with ions ranging from hydrogen to carbon. The station is mounted on a 2 MV tandem accelerator, and the energy range can be set up in the linear energy transfer (LET) ranges that are useful for radiobiological experiments. This paper describes the current status of the hardware that has been developed, and presents results related to its performance in term of dose-rate, energy range and beam uniformity for protons, alpha particles and carbon ions. The results of clonogenic assays of A549 lung adenocarcinoma cells irradiated with protons and alpha particles are also presented and compared with literature. © 2011 Elsevier B.V. All rights reserved

    North Sea Wrecks - An interdisciplinary approach towards understanding the risks posed by wrecks containing munitions in the North Sea

    Get PDF
    Shipwrecks and dumped munitions continue to be a major hazard in the North Sea. Research within the EU Interreg project North Sea Wrecks (NSW), in cooperation with DLR, is generating new insights into the status of wrecks, the potential leakage of pollutants from munitions loads and the effects of contamination on exposed marine organisms in the North Sea environment. Further, historical documents are compared to models and visual inspections of the wreck. Samples of water, sediment and organisms are being analysed. Combining the results of these different fields of research allows for a better understanding of the environmental risks deriving from these wrecks. The extended article will detail the wreck of the SMS Mainz as a case study

    Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?

    Full text link
    peer reviewedBackground Aboveground, plants release volatile organic compounds (VOCs) that act as chemical signals between neighbouring plants. It is now well documented that VOCs emitted by the roots in the plant rhizosphere also play important ecological roles in the soil ecosystem, notably in plant defence because they are involved in interactions between plants, phytophagous pests and organisms of the third trophic level. The roles played by root-emitted VOCs in between- and within-plant signalling, however, are still poorly documented in the scientific literature. Scope Given that (1) plants release volatile cues mediating plant-plant interactions aboveground, (2) roots can detect the chemical signals originating from their neighbours, and (3) roots release VOCs involved in biotic interactions belowground, the aim of this paper is to discuss the roles of VOCs in between- and within-plant signalling belowground. We also highlight the technical challenges associated with the analysis of root-emitted VOCs and the design of experiments targeting volatile-mediated root-root interactions. Conclusions We conclude that root-root interactions mediated by volatile cues deserve more research attention and that both the analytical tools and methods developed to study the ecological roles played by VOCs in interplant signalling aboveground can be adapted to focus on the roles played by root-emitted VOCs in between- and within-plant signalling

    Low-Dose Hypersensitivity and Bystander Effect are Not Mutually Exclusive in A549 Lung Carcinoma Cells after Irradiation with Charged Particles.

    No full text
    The purpose of this study was to measure survival fraction of A549 lung carcinoma cells irradiated with charged particles of various LET and to determine mechanisms responsible for enhanced cell killing in the low-dose region. A549 cells were irradiated with a broadbeam of either 10 and 25 keV/μm protons or 100 keV/μm alpha particles and then processed for clonogenic assays and phospho-histone H3 staining. The survival fraction of unirradiated A549 cells co-cultured with irradiated cells was also evaluated. A549 cells were shown to exhibit low-dose hypersensitivity (HRS) for both protons and alpha particles. The dose threshold at which HRS occurs decreased with increasing linear energy transfer (LET), whereas αs, the initial survival curve slope, increased with increasing LET. In addition, the enhanced cell killing observed after irradiation with alpha particles was partly attributed to the bystander effect, due to the low proportion of hit cells at very low doses. Co-culture experiments suggest a gap junction-mediated bystander signal. Our results indicate that HRS is likely to be dependent on LET, and that a bystander effect and low-dose hypersensitivity may co-exist within a given cell line
    corecore