36 research outputs found

    High-resolution Multi-spectral Imaging with Diffractive Lenses and Learned Reconstruction

    Full text link
    Spectral imaging is a fundamental diagnostic technique with widespread application. Conventional spectral imaging approaches have intrinsic limitations on spatial and spectral resolutions due to the physical components they rely on. To overcome these physical limitations, in this paper, we develop a novel multi-spectral imaging modality that enables higher spatial and spectral resolutions. In the developed computational imaging modality, we exploit a diffractive lens, such as a photon sieve, for both dispersing and focusing the optical field, and achieve measurement diversity by changing the focusing behavior of this lens. Because the focal length of a diffractive lens is wavelength-dependent, each measurement is a superposition of differently blurred spectral components. To reconstruct the individual spectral images from these superimposed and blurred measurements, model-based fast reconstruction algorithms are developed with deep and analytical priors using alternating minimization and unrolling. Finally, the effectiveness and performance of the developed technique is illustrated for an application in astrophysical imaging under various observation scenarios in the extreme ultraviolet (EUV) regime. The results demonstrate that the technique provides not only diffraction-limited high spatial resolution, as enabled by diffractive lenses, but also the capability of resolving close-by spectral sources that would not otherwise be possible with the existing techniques. This work enables high resolution multi-spectral imaging with low cost designs for a variety of applications and spectral regimes.Comment: accepted for publication in IEEE Transactions on Computational Imaging, see DOI belo

    A Model-Based Measure to Assess Operator Adherence to Procedures

    Get PDF
    Procedures play an important role in domains where humans interact with critical, complex systems. In such environments, the operator’s ability to correctly follow a given set of procedures can directly impact system safety. A quantitative measure of procedural adherence during training for complex system operation would be useful to assess trainee performance and evaluate a training program. This paper presents a novel model-based objective metric for quantifying procedural adherence in training. This metric is sensitive to both the number and nature of procedural deviations, and can be used with cluster analysis to classify trainee performance based on adherence. The metric was tested on an experimental data set gathered from volunteers using aircraft maintenance computer-based training (CBT). The properties of the metric are discussed, along with future possibilities

    Developmental origin of chronic diseases: toxicological implication

    Get PDF
    Human epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exerts a profound influence on physiological function and risk of disease in adult life. The molecular, cellular, metabolic, endocrine and physiological adaptations to intrauterine nutritional conditions result in permanent alterations of cellular proliferation and differentiation of tissues and organ systems, which in turn can manifest by pathological consequences or increased vulnerability to chronic diseases in adulthood. Intrauterine growth restriction (IUGR) due to intrauterine development derangements is considered the important factor in development of such diseases as essential hypertension, diabetes mellitus, ischemic diseases of the heart, osteoporosis, respiratory, neuropsychiatric and immune system diseases

    A phase I study of bendamustine hydrochloride administered day 1+2 every 3 weeks in patients with solid tumours

    Get PDF
    The aim of the study was to determine the maximum tolerated dose (MTD), the dose limiting toxicity (DLT), and the pharmacokinetic profile (Pk) of bendamustine (BM) on a day 1 and 2 every 3 weeks schedule and to recommend a safe phase II dose for further testing. Patients with solid tumours beyond standard therapy were eligible. A 30-min intravenous infusion of BM was administered d1+d2 q 3 weeks. The starting dose was 120 mg m−2 per day and dose increments of 20 mg m−2 were used. Plasma and urine samples were analysed using validated high-performance liquid chromatography/fluorescence assays. Fifteen patients were enrolled. They received a median of two cycles (range 1–8). The MTD was reached at the fourth dose level. Thrombocytopaenia (grade 4) was dose limiting in two of three patients at 180 mg m−2. One patient also experienced febrile neutropaenia. Lymphocytopaenia (grade 4) was present in every patient. Nonhaematologic toxicity including cardiac toxicity was not dose limiting with this schedule. Mean plasma Pk values of BM were tmax 35 min, t1/2 49.1 min, Vd 18.3 l m−2, and clearance 265 ml min−1 m−2. The mean total amount of BM and its metabolites recovered in the first micturition was 8.3% (range 2.7–26%). The MTD of BM in the present dose schedule was 180 mg m−2 on day 1+2. Thrombocytopaenia was dose limiting. The recommended dose for future phase II trials with this schedule is 160 mg m−2 per day

    Evaluation of developmental neurotoxicity: some important issues focused on neurobehavioral development

    Get PDF
    Exposure of the developing organism to industrial chemicals and physical factors represents a serious risk factor for the development of neurobehavioral disorders, such as attention-deficit hyperactivity disorder, autism and mental retardation. Appropriate animal models are needed to test potentially harmful effects and mechanisms of developmental neurotoxicity of various chemical substances. However, there are significant human vs. rat differences in the brain developmental profile which should be taken into account in neurotoxicity studies. Subtle behavioral alterations are hard to detect by traditional developmental toxicity and teratogenicity studies, and in many cases they remain hidden. They can however be revealed by using special behavioral, endocrine and/or pharmacological challenges, such as repeated behavioral testing, exposure to single stressful stimulus or drugs. Further, current neurobehavioral test protocols recommend to test animals up to their adulthood. However some behavioral alterations, such as anxiety-like behavior or mental deficiency, may become manifest in later periods of development. Our experimental and scientific experiences are highly suggestive for a complex approach in testing potential developmental neurotoxicity. Strong emphasis should be given on repeated behavioral testing of animals up to senescence and on using proper pharmacological and/or stressful challenges

    Experimental modeling of hypoxia in pregnancy and early postnatal life

    Get PDF
    The important role of equilibrium of environmental factors during the embryo-fetal period is undisputable. Women of reproductive age are increasingly exposed to various environmental risk factors such as hypoxia, prenatal viral infections, use of drugs, smoking, complications of birth or stressful life events. These early hazards represent an important risk for structural and/or functional maldevelopment of the fetus and neonates. Impairment of oxygen/energy supply during the pre- and perinatal period may affect neuronal functions and induce cell death. Thus when death of the newborn is not occurring following intrauterine hypoxia, various neurological deficits, including hyperactivity, learning disabilities, mental retardation, epilepsy, cerebral palsy, dystonia etc., may develop both in humans and in experimental animals. In our animal studies we used several approaches for modeling hypoxia in rats during pregnancy and shortly after delivery, i.e. chronic intrauterine hypoxia induced by the antiepileptic drug phenytoin, neonatal anoxia by decreased oxygen saturation in 2-day-old pups. Using these models we were able to test potential protective properties of natural (vitamin E, melatonin) and synthetic (stobadine) compounds. Based on our results, stobadine was also able to reduce hypoxia-induced hyperactivity and the antioxidant capacity of stobadine exceeded that of vitamin E and melatonin, and contrary to vitamin E, stobadine had no adverse effects on developing fetus and offspring

    Protection of the vascular endothelium in experimental situations

    Get PDF
    One of the factors proposed as mediators of vascular dysfunction observed in diabetes is the increased generation of reactive oxygen species (ROS). This provides support for the use of antioxidants as early and appropriate pharmacological intervention in the development of late diabetic complications. In streptozotocin (STZ)-induced diabetes in rats we observed endothelial dysfuction manifested by reduced endothelium-dependent response to acetylcholine of the superior mesenteric artery (SMA) and aorta, as well as by increased endothelaemia. Changes in endothelium-dependent relaxation of SMA were induced by injury of the nitric oxide radical (·NO)-signalling pathway since the endothelium-derived hyperpolarising factor (EDHF)-component of relaxation was not impaired by diabetes. The endothelial dysfunction was accompanied by decreased ·NO bioavailabity as a consequence of reduced activity of eNOS rather than its reduced expression. The results obtained using the chemiluminiscence method (CL) argue for increased oxidative stress and increased ROS production. The enzyme NAD(P)H-oxidase problably participates in ROS production in the later phases of diabetes. Oxidative stress was also connected with decreased levels of reduced glutathione (GSH) in the early phase of diabetes. After 10 weeks of diabetes, adaptational mechanisms probably took place because GSH levels were not changed compared to controls. Antioxidant properties of SMe1EC2 found in vitro were partly confirmed in vivo. Administration of SMe1EC2 protected endothelial function. It significantly decreased endothelaemia of diabetic rats and improved endothelium-dependent relaxation of arteries, slightly decreased ROS-production and increased bioavailability of ·NO in the aorta. Further studies with higher doses of SMe1EC2 may clarify the mechanism of its endothelium-protective effect in vivo

    Multi-Agent Strategic Modeling in a Specific Environment

    No full text
    corecore