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Procedures play an important role in domains where humans interact with critical, complex systems.  In 

such environments, the operator’s ability to correctly follow a given set of procedures can directly impact 

system safety. A quantitative measure of procedural adherence during training for complex system opera-

tion would be useful to assess trainee performance and evaluate a training program. This paper presents a 

novel model-based objective metric for quantifying procedural adherence in training. This metric is sensi-

tive to both the number and nature of procedural deviations, and can be used with cluster analysis to classi-

fy trainee performance based on adherence.  The metric was tested on an experimental data set gathered 

from volunteers using aircraft maintenance computer-based training (CBT). The properties of the metric 

are discussed, along with future possibilities. 

 

INTRODUCTION 

 

Procedures are commonplace for guiding interactions be-

tween humans and complex systems. Standard operating pro-

cedures (SOPs) are typically developed to improve system 

safety and operations by providing operators a specific set of 

actions appropriate for various circumstances. To prepare for 

procedure-based environments, trainees often complete a rig-

orous training program that includes practice utilizing the pro-

cedures.  Typically, the ability of trainees to follow SOPs is 

determined qualitatively by a training supervisor, who often 
only considers the final outcome of each training module 

(such as in surgical training, (Lammers et al., 2008)).  A quan-

titative measure of procedure adherence for trainees undergo-

ing instruction for a complex system would be useful to assess 

trainee performance as well as evaluate a training program.   

This paper presents a novel model-based objective metric 

for quantifying procedural adherence in training. By generat-

ing a score value for each trainee, the Procedure Adherence 

Metric (PAM) can augment the assessment of a training su-

pervisor with an objective performance evaluation.  This met-

ric is sensitive to both the number and nature of procedural 
deviations, and can be used with cluster analysis to classify 

trainee performance based on adherence.   

The metric was tested on an experimental data set gath-

ered from volunteers using an aircraft maintenance computer-

based training (CBT) interface.  Based on this data set, the 

main properties of the PAM score were identified, and the 

metric was used to group trainees using clustering algorithms. 

In this paper, the development and properties of the metric are 

discussed, along with the current applications and further pos-

sible uses of the metric to predict future performance of train-

ees. 

 

LITERATURE OVERVIEW 

 

A large body of research has attempted to answer the 

question of how to assess the performance of a trainee.  As-

sessment strategies typically depend on the type of knowledge 

to be obtained in training, which can be split into procedural 

(how to perform a task) or declarative (improved understand-

ing of a topic) strategies (Alessi, 2000). Within the scope of 

this paper, the emphasis is on the assessment of training for 

procedural knowledge. 

Most training performance assessment techniques fall into 

two categories: qualitative assessment and performance-based 

assessment (Govaerts, van der Vleuten, Schuwirth, & 

Muijtjens, 2007). Qualitative assessment usually involves 

evaluation by an expert instructor either in training (Govaerts, 

et al., 2007) or after a training session (Owen, Mugford, Fol-
lows, & Plummer, 2006). However, qualitative assessment 

methods have been challenged for their lack of accuracy and 

reliability (Govaerts, et al., 2007).  

Performance-based assessment adopts a more objective 

approach, where trainees are expected to operate under a cer-

tain set of performance criteria (Hamman, 2004). Perfor-

mance-based methods typically utilize simulation or examina-

tion to directly test these aspects of performance. In simula-

tion, embedded assessment tools can provide an unobtrusive 

way to collect data that correspond to the learning objectives 

of the training (Nählinder, Oskarsson, Lindahl, Hedström, & 
Berggren, 2009). Since in- and post-training performance are 

not always directly correlated (Ghodsian, 1997), both qualita-

tive and performance-based techniques can have difficulty in 

evaluating the operational applicability of the training (Bjork 

& Bjork, 2006).  

Researchers have made clear that further research is need-

ed to identify new models and methods for assessing proce-

dural skills in simulation (Lammers, et al., 2008). A new 

quantitative method based on how well trainees follow proce-

dures during training could help in overcoming these chal-

lenges and support superior predictions of future performance, 

both in training and the real-world. 
Most previous research on procedure adherence only ac-

counts for the number of procedural deviations (e.g. (Gerbaud, 

2008)). However, not all procedural deviations necessarily 

degrade performance. For example, experts sometimes reor-

ganize or skip steps in commonly-used procedures to solve 
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problems more efficiently. Since deviations can arise for sev-

eral reasons, the nature of a procedural deviation must be tak-

en into account in any assessment. Lammers et al. (2008) pro-

pose that the characteristics and the components of each pro-

cedure must be clearly defined before constructing an evalua-

tion tool. Vague or unclear terms may lead to non-compliance 
(Rogovin, 1979), which may lead to the assumption that pro-

cedural deviation relates to trainee inability to perform a task.  

Given these considerations, an inexpensive, embedded 

performance-based metric for procedural adherence is needed. 

Ideally, we propose this metric would have the following 

characteristics: 

1. Sensitive to number and type of deviations from the 

prescribed procedure 

2. Able to compare trainees on procedural adherence 

3. Able to classify trainees into subgroups (i.e., distin-

guish good from poor trainees) 

4. Simple to interpret  
5. Predictive of operational performance 

The following section discusses a variety of possible 

techniques that could be applied to measuring procedural de-

viations, and compares how these techniques fit the ideal 

characteristics of a performance-based metric. 

 

METHODS 

 

Procedure as a Sequence 

 

An SOP defines a series of actions for the user to take, 
typically under a certain set of initial conditions that make the 

procedure appropriate.  The set of actions contained in a pro-

cedure can be translated into a sequence, with each action hav-

ing a previous action and a subsequent action (Figure 1). Fol-

lowing a procedure similarly consists of an ordered sequence 

of actions, generated as a trainee attempts to complete the pro-

cedure. However, the sequence of trainee actions may not ex-

actly match the sequence given by the SOP.  Errors such as 

omission of an action, performing actions out of order, or sub-

stitution of an action with an incorrect one can create mis-

matches between the procedure sequence and the trainee se-

quence. Typically in a complex system, there are more actions 
available to the user than are needed for any particular proce-

dure. Therefore, it is even possible for a trainee to generate 

actions that are never observed in the procedure sequence.   

In this framework, procedure adherence can be measured 

by the difference between a SOP sequence and the trainee 

sequence. Numerous methods that measure the distance be-

tween sequences have been developed, including sequence-

based methods (e.g. Levenshtein distance (Levenshtein, 

1966)) and model-based methods (e.g. Kullback-Leibler di-

vergence (García-García, Hernández, & Diaz de Maria, 

2009)). Sequence-based methods focus on the direct compari-
son of the sequences, while model-based methods model each 

sequence and then compare the similarity of the models as a 

proxy for sequence distance. To select the best method for the 

calculation of sequence distance, four elements for procedure 

adherence measurement were considered: 

 

 
Figure 1. An example procedure sequence and a corre-

sponding trainee-generated sequence 

 

1. Ability for different types of errors to be penalized 

separately (i.e. error weighting) 

2. Non-equal sequence length between the observed and 

expected sequence of actions, i.e., where the user per-

forms a different number of actions than the pre-

scribed procedure 

3. Sensitivity to number of deviations between the ob-

served versus expected sequence of actions 

4. Sensitivity to trainee action order – the ability to dis-
tinguish between correct and incorrect ordering 

 

Three methods that calculate sequence distance were con-

sidered: Two sequence-based methods (Levenshtein distance 

and suffix arrays (Manber & Myers, 1990)) and one model-

based method (Kullback-Leibler divergence). We chose the 

Kullback-Leibler (KL) approach as it meets all four criteria 

above. The KL divergence inherently creates a variable penal-

ty for user deviations from the intended procedure based on 

transition probabilities between actions. This allows the metric 

to be sensitive to the order of the actions in the sequence. Be-
cause of this advantage, the KL divergence was used as the 

basis for the procedural adherence metric. However, it re-

quired adaptation for our purposes, described below. 

 

Proposed Metric 

 

The main goal of measuring procedure adherence is to as-

sess trainees’ performance against the SOP. Additionally, 

trainees can be objectively compared against each other based 

on their training performance, and tracking procedure adher-

ence can indicate struggling trainees that need re-training.  

Our proposed metric, the Procedure Adherence Metric 
(PAM) was based on the KL divergence between sequences. 

A single final value can be calculated for an entire sequence, 

or the deviation can be calculated at each action in the trainee 

sequence (Figure 2). To identify whether a single KL diver-

gence value or the progression of the divergence over time is a 

better measure of overall procedure adherence, several fea-

tures of the KL divergence over the course of a typical training 

module were analyzed. These included final value, mean di-

vergence, area under the curve, peak divergence, peak-final 

difference, and peak-final ratio. The divergence at each action 

was calculated by comparing the model of the subsequence, 



represented by all events up to that action to the intended pro-

cedure. It was determined that using the area under the KL 

curve was the most useful form of the metric because it pro-

vided the closest rankings of trainees (from best to worst) as 

from an expert evaluator. Using the area indicates that a score 

value   can be computed as: 
 

 

        

 

   

 (1)  

 

Where N is the number of events (interactions) in the training 

sequence, and     represents the symmetrized Kullback-

Leibler divergence between the trainee sequence of states 1…i 

and the intended sequence of states of equivalent length. If N 

is greater than the number of states in the intended sequence 

(M), the complete intended sequence is used for all i>M. It is 
important to recognize that as the PAM is based on diver-

gence, a lower score indicates better performance.  

 
Figure 2. Illustration of aspects of KL divergence progres-

sion that could be used in the measurement of procedure 

adherence 
 

A potential issue that arises in the use of the KL diver-

gence for the PAM is zero-probability values in the transition 

matrix. This transition matrix represents the probability of all 

transitions between states in the model. For a model based on 

a sequence, the maximum likelihood estimate simply counts 

the number of times a consecutive state pair is found (e.g. state 

1 to state 2), and normalizes by the number of transitions. If a 

particular set of states are never observed consecutively, the 

count (and therefore the probability estimate) for that transi-

tion is zero. The size of the state transition matrix is heavily 

dependent on the number of existing states (NxN for N states), 
and can be large for CBT settings.   

Often the set of actual transitions in any particular train-

ing procedure will not cover the entire set of possible transi-

tions. When included in the model, these zero probability 

events send the KL divergence to infinity. Instead a small (but 

non-zero) probability can be assigned to transitions that do not 

occur in the intended procedure. This results in a large diver-

gence score (poor performance) in the PAM, but does not send 

the divergence to infinity. Smoothing methods can assign the-

se low probabilities in the transition matrix. Smoothing (or 

frequency estimation) techniques can be employed to estimate 
the probability of occurrence of novel events, such as in a 

Markov Chain. For the PAM, Good-Turing smoothing was 

selected as the smoothing method based on its ability to han-

dle large numbers of novel events and applicability to first-

order Markov models.   

 

Application of PAM to CBT 
 

In a CBT setting, the trainee’s interactions with the inter-

face (mouse clicks, typing, etc.) represent an important objec-

tive data source that can be used to quantify performance. In 

these settings where a large number of actions are available, 

sparse transition matrices for both the procedure and trainee 

sequences can arise. In general, the problem of sparse transi-

tion matrices can be alleviated by grouping several events into 

a single state to reduce the total size of the transition matrix. In 

the context of procedural adherence in training, functional 

training objectives for a module can be used to create the 

groupings. All events that correspond to a single training ob-
jective can be consolidated into a single state. For example, all 

sub-tasks related to the objective of turning off a machine 

could be grouped under a single “Shut-down” state. This 

would reduce the entire set of states represented by each indi-

vidual action into a single state indicating that the trainee is 

pursuing the correct objective. 

The sequence generated by a user’s behavior with a CBT 

can then be compared to the prescribed sequence via the PAM. 

To test the usefulness of the metric in evaluating performance 

and procedural adherence in CBT settings, data was collected 

on a sample CBT interface. The process is detailed below, 
including an example of state consolidation and the results of 

the metric application. 

 

DATA COLLECTION 

 

The experimental population comprised 17 volunteers, 12 

males and 5 female. The participants' ages were between 18 

and 57 years old (mean 27.3 years, standard deviation of 9.3 

years). In the data collection exercise, volunteers were asked 

to resolve a particular aircraft maintenance-related problem. 

The computer-based interface used was created by Boeing 

Flight Services with the intent of training maintenance per-
sonnel to resolve problems with aircraft systems.  

The volunteers were asked to solve a simulated mainte-

nance task using the CBT. Their role was to investigate an 

error message provided at the beginning of the session.  The 

volunteers were asked to perform an identical task twice using 

the CBT, with no time pressure. Subjects were instructed to 

solve an aircraft error message by following a series of diag-

nostic steps, including error identification, gathering reference 

information, solution identification, and solution implementa-

tion.  A walkthrough of the interface was given before the first 

run. The first run acted as a familiarization with the CBT in-
terface, and the second run was used for data analysis. A log 

file was generated for each run that contained a list of user 

interactions with the interface.  To reduce the size of the tran-

sition matrix, groupings of actions were treated as single states 

based on cognitive similarities between the actions.  These 

groupings were 1) Main Menu, 2) Searching for Message, 3) 

Performing Tests, 4) Engine Indication and Crew Alerting 



System Message, 5) Inaccessible Menus (error), 6) Fault Code 

Index, 7) Task Manual, 8) Performing Repairs, and 9) Correc-

tive Action. 

 

RESULTS & DISCUSSION 

 
The difference between the sequences of events generated 

by the participants and the intended procedural sequence was 

measured using the PAM.  For the second run (data analysis 

run), the KL divergence was computed at each state transition. 

Figure 3 shows the divergence graph for all participants by 

interaction across the experimental run, and Figure 4 shows 

the overall PAM score for each participant.  The divergence is 

plotted by transition count, with each value representing the 

divergence at the user subsequence of that number of transi-

tions. For example, at the time the user has performed 20 ac-

tions, there are 19 transitions that will be included in the di-

vergence calculation. Time to task completion is not consid-
ered in this analysis.  Three outlying performances are seen, 

representing trainees that became lost in the interface. 

 
Figure 3. KL divergence over the course of the training 

run 

 

 
Figure 4. PAM score based on area under the curve for 

each participant 

 

The divergence score can take on a value between 0 and 

infinity. A score of 0 represents no difference between the user 

and intended model.  The upper bound of the PAM value is 

based on 1) the smoothing method and 2) the number of tran-

sitions in the trainee sequence. The meaning of any particular 

value of the PAM score is dependent on both the training task 

and objectives.  In some systems, it may be imperative that 

every step of a procedure is followed to the letter.  In these 

cases even modest deviation scores may indicate a need for 

retraining.  In other circumstances, only the poor performers 

may need remedial work. Thus the interpretation of both the 
numerical score and the significance of the deviations are de-

pendent on the specific procedure under evaluations. 

At each transition in Figure 3, the increase, constant, or 

decrease of the divergence value indicates something about 

the behavior of the user.  Two types of divergence can be 

identified and separated: performing the right action at the 

wrong time, and performing a wrong action. Further investiga-

tion showed that an increase in the KL divergence at a transi-

tion indicated a deviation from the SOP at that time, while a 

decrease indicated that the user had performed a task too early.  

A level portion of the graph indicates that the user is following 

the intended procedures. Since the PAM incorporates the area 
under this graph, it can differentiate between an incorrect ac-

tion and an action performed out of order. However, there are 

cases where performing a correct action at an incorrect time 

can be just as dangerous as a totally incorrect action. Work is 

underway to determine how to add weighting parameters that 

include heavier penalties for performing critical actions incor-

rectly. 

In order to investigate how the metric addresses the tim-

ing of an error, two artificial sets of sequences were created. 

One contained a set of errors early in a procedure, and the 

other contained an equivalent set of errors later in the proce-
dure.  The results indicated that the divergence score applies a 

higher penalty to an early deviation than a later one.  Thus, 

trainees’ mistakes earlier are penalized more than later mis-

takes.  We are currently investigating potential weighting fac-

tors that could modify the balance of the penalties for early 

mistakes compared to later mistakes.   

An additional use for the metric is grouping users of simi-

lar behavior in order to identify strong and weak performers.  

In training settings, it may be efficient for the supervisor to be 

able to identify a subset of trainees that all exhibit similar pro-

cedural adherence deficits, such that these trainees could un-

dergo the same retraining process, or to highlight difficult 
parts of a procedure. These potential groupings could be de-

termined by cluster analysis.  A simple cluster analysis for the 

data in Figures 3 and 4 revealed two clusters that separated the 

outliers from the other trainees.  While this may seem apparent 

by inspection for this data set, the ability to objectively deter-

mine groupings could be useful in providing further feedback 

to a supervisor. The cluster analysis used here was based en-

tirely on the divergence data, but the consideration of demo-

graphic inputs such as computer experience or CBT familiari-

ty could help inform the clustering process. 

With more data, additional groupings based on behavioral 
similarity could be revealed using this clustering methodolo-

gy. These outliers showed behaviors that were indicative of 

being ‘lost’ in the interface, such as consistently clicking on 

menus or buttons that were unrelated to the task.  Despite re-

ceiving training on the exact procedure to be followed, these 

subjects had difficulty in regaining the correct solution path 

once they became lost. All subjects were allowed to complete 



the task, and the behavior of the outlying subjects seems con-

sistent with a trial and error strategy. 

There are several practical applications of the PAM.  The 

PAM makes use of not just the outcome of each training mod-

ule, but all of the training process data. This approach objec-

tively allows a supervisor to identify possible stumbling points 
throughout each training module, either as a result of poor 

training design or problems with the individual trainee.  By 

providing an objective performance score for trainees based 

on their adherence to the SOP, supervisors can augment their 

own view of the trainees’ strengths and weaknesses.  While 

not intended to replace the supervisor’s assessment, the PAM 

and the underlying KL graph give a supervisor insight into 

which sections of the procedure are difficult.   

 

CONCLUSIONS AND FUTURE WORK 

 

PAM, a new metric for measuring procedure adherence in 
CBT environments, provides an objective measure that can be 

used to compare trainees’ procedural adherence. As has been 

demonstrated, it is sensitive to both the number and nature of 

deviations from intended procedures. Cluster analysis can 

classify trainees in groups based on their adherence.  By com-

bining procedural deviations into a single metric, PAM pro-

vides a simple method for supervisors to judge trainees’ ad-

herence.   

Because the PAM is based on the Kullback-Liebler diver-

gence method, there are some limitations. Of most concern is 

the inability to weight different error types, as well as 
weighting them based on when they occur in the procedure.  

These areas are currently under investigation. 

 Further research can be conducted that may improve the 

PAM. Additional larger data sets will help to validate its use-

fulness in classifying trainees.  Training literature generally 

considers time to task completion as an indicator of training 

and operational performance, and the inclusion of temporal 

information may bolster the metric’s ability to make accurate 

operational performance predictions. 

Future work can also expand the applications of the PAM. 

The metric could be used to evaluate training modules based 

on the aggregate behavior of trainees. If a particular module 
resulted in poor PAM scores across all trainees, this may be 

indicative that the training module is poorly designed. Use of 

the metric to predict operational performance is also an im-

portant potential application of this research.   
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