20,329 research outputs found

    Heisenberg limited Sagnac interferometry

    Get PDF
    We show how the entangled photons produced in parametric down conversion can be used to improve the sensitivity of a Sagnac interferometer. Two-photon and four-photon coincidences increases the sensitivity by a factor of two and four respectively. Our results apply to sources with arbitrary pumping and squeezing parameters.Comment: 11 pages, 5 figure

    Quantum interferometry using coherent beam stimulated parametric down-conversion

    Full text link
    We show how stimulated parametric processes can be employed in experiments on beyond the diffraction limit to overcome the problem of low visibility obtained by using spontaneous down conversion operating in the high gain regime. We further show enhancement of the count rate by several orders when stimulated parametric processes are used. Both the two photon counts and the visibility can be controlled by the phase of the stimulating coherent beam.Comment: 7 pages, 4 figure

    Stable Marriage with Multi-Modal Preferences

    Full text link
    We introduce a generalized version of the famous Stable Marriage problem, now based on multi-modal preference lists. The central twist herein is to allow each agent to rank its potentially matching counterparts based on more than one "evaluation mode" (e.g., more than one criterion); thus, each agent is equipped with multiple preference lists, each ranking the counterparts in a possibly different way. We introduce and study three natural concepts of stability, investigate their mutual relations and focus on computational complexity aspects with respect to computing stable matchings in these new scenarios. Mostly encountering computational hardness (NP-hardness), we can also spot few islands of tractability and make a surprising connection to the \textsc{Graph Isomorphism} problem

    Radix-2 x 2 x 2 algorithm for the 3-D discrete hartley transform

    Get PDF
    The discrete Hartley transform (DHT) has proved to be a valuable tool in digital signal/image processing and communications and has also attracted research interests in many multidimensional applications. Although many fast algorithms have been developed for the calculation of one- and two-dimensional (1-D and 2-D) DHT, the development of multidimensional algorithms in three and more dimensions is still unexplored and has not been given similar attention; hence, the multidimensional Hartley transform is usually calculated through the row-column approach. However, proper multidimensional algorithms can be more efficient than the row-column method and need to be developed. Therefore, it is the aim of this paper to introduce the concept and derivation of the three-dimensional (3-D) radix-2 2X 2X algorithm for fast calculation of the 3-D discrete Hartley transform. The proposed algorithm is based on the principles of the divide-and-conquer approach applied directly in 3-D. It has a simple butterfly structure and has been found to offer significant savings in arithmetic operations compared with the row-column approach based on similar algorithms

    Using a Goal-Driven Approach in the Investigation of a Questioned Contract

    Get PDF
    Part 3: FORENSIC TECHNIQUESInternational audienceThis paper presents a systematic process for describing digital forensic investigations. It focuses on forensic goals and anti-forensic obstacles and their operationalization in terms of human and software actions. The paper also demonstrates how the process can be used to capture the various forensic and anti-forensic aspects of a real-world case involving document forgery
    • …
    corecore