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Abstract: We show how the entangled photons produced in parametric
down conversion can be used to improve the sensitivity of a Sagnac
interferometer. Two-photon and four-photon coincidencesincreases the
sensitivity by a factor of two and four respectively. Our results apply to
sources with arbitrary pumping and squeezing parameters.
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1. Introduction

When two electromagnetic waves counter-propagate along a circular path in rotation they ex-
perience different travel times to complete the path. This induces a phase shift between the
two counter-propagating waves proportional to the angularvelocity of the rotation. This phase
difference is called as the Sagnac effect [1] and in additionto its scientific importance, it has nu-
merous practical applications such as detection and high-precision measurement of rotation. It
was studied and used in optics only with lasers until the new work [2] where they demonstrated
the single-photon interference in the fiber Sagnac interferometer using spontaneous paramet-
ric down conversion as the source of single photons. However, it turns out that the results of
interference are no different than with classical sources.This is also true of many interfero-
metric experiments done at the single photon level [3, 4, 5].Thus a natural question would be
–what is the nature of interference if we replace the single photon source by entangled photon
pair source. This is what we examine in detail. We find that thesensitivity of Sagnac inter-
ferometer could be considerably improved by using correlated photons [6, 7]. We thus bring
Sagnac interferometer in the same class as other experiments on imaging [8, 9], lithography
[10, 11, 12, 13, 14, 15] and spectroscopy [16].

Parametric down conversion (PDC) is predominant mechanismfor experimentalists to cre-
ate entangled photon pairs as well as single photons. Multi-photon entangled states produced
in the down-conversion process is often used in quantum information experiments and appli-
cations like quantum cryptography and the Bell inequalities. In particular, demonstrations of
two-photon [17, 18, 19, 20] and four-photon [21, 22] interferences are holding promise for re-
alizable applications with entanglement-enhanced performance. The principle of this enhance-
ment lies in the fact that “the photonic de Broglie wavelength” [23] of an ensemble of photons
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with wavelengthλ and number of photonsn can be measured to beλ/n using a special inter-
ferometer. Further Steuernagel [24] has proposed the measurement of the reduced de Broglie
wavelength of two- and four-photon wave packets.

In this paper we present an analysis of how parametric down converted photons could be
useful to increase the rotation sensitivity in Sagnac interferometers. The results show two- and
four-fold increase in the sensitivity which can be interpreted as a sign of two- and four-photon
interference effect. The organization of the paper is as follows. The Sagnac ring interferom-
eter is described in section 2 and the Sagnac phase shift is derived. In section 3, we analyze
interference results with classical and quantum inputs. Wecompare the results obtained from
entangled photon pairs input with classical and single-photon inputs. We show how the two-
photon and four-photon coincidences increases the sensitivity in the phase shift. The visibility
of the counts are also discussed. We conclude the paper in section 4 with a brief discussion on
the disturbances that can effect the transmission of modes in fibers.

2. The Sagnac interferometer

The Sagnac interferometer consists of a ring cavity around which two laser light beams travel
in opposite directions on a rotating base. One can form an interference pattern by extracting and
heterodyning portions of the two counter-propagating beams to detect the rotation rate of the
ring cavity relative to an inertial frame. The position of the interference fringes is dependent on
angular velocity of the setup. This dependence is caused by the rotation effectively shortening
the path distance of one beams, while lengthening the other.In 1926, a Sagnac interferometer
has been used by Albert Michelson and Henry Gale to determinethe angular velocity of the
Earth. It can be used in navigation as a ring laser gyroscope,which is commonly found on
fighter planes, navigation systems on commercial airliners, ships and spacecraft.

W

P
2

P

1
P

R

Fig. 1. Schematics of a Sagnac ring interferometer.

The Sagnac effect [1] can be understood by considering a circular ring interferometer like
the one shown in Fig. 1. The input laser field enters the interferometer at pointP and split into
clockwise (CW) and counterclockwise (CCW) propagating beamsby a beam splitter. If the
interferometer is not rotating, the beams recombine at point P after a time given by

t =
2πR

c
, (1)
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whereR is the radius of the circular beam path. However, if the interferometer is rotating with
angular velocityΩ, about an axis through the center and perpendicular to the plane of the
interferometer, then the beams reencounter the beam splitter at different times. The transit times
to complete one round trip for CW (t2 at pointP2) and CCW (t1 at pointP1) are given by,

t1 =
2πR

c+RΩ
, (2)

t2 =
2πR

c−RΩ
. (3)

Then one round trip time delay between the two beams is the difference

∆t = t2− t1 =
4πR2Ω

c2−R2Ω2 . (4)

For non-relativistic perimeter speeds (i.e. reasonable values ofR andΩ), R2Ω2 ≪ c2, then

∆t =
4πR2Ω

c2 . (5)

The angular phase difference between the two counter propagating waves, the Sagnac effect,
can be written as,

φ = ω∆t =
8π
λ c

AΩ , (6)

whereλ is the wavelength,c the light velocity in vacuum,A the interferometer area andΩ
the angular velocity of the interferometer. A more general approach [26, 25, 27] shows that
the phase shift does not depend on the shape of the interferometer and it is proportional to the
flux of the rotation vectorΩ through the interferometer enclosed area. Then one can increase
the flux by using multi-turn round-trip path like utilizing an optical fiber. In terms of the total
length of the optical fiber,L, we can recast Eq. (6) into

φ =
4πLRΩ

λ c
. (7)

Eq. (7) shows that the phase shift induced by rotation of a Sagnac fiber ring interferometer
increases linearly with the total length of the optical fiber.

3. The Sagnac interferometer with classical and quantum inputs

3.1. Classical input

We now consider a Sagnac fiber ring interferometer setup shown in Fig. 2. The two input ports
1 and 2 are mixed by a 50/50 beam splitter and sent through a rotating loop of fiber in the
opposite direction. Then the beams recombine at the beam splitter and come out from the ports
they entered. The rotation induces the phase differenceφ given by the Eq. (7). If we choose the
transmission and reflection coefficients of the beam splitter ast = 1/

√
2 = t ′, r = i/

√
2 = r′

then the entire setup transforms the input fieldEin into the output fieldsE1 andE2 by

E1 = r′rEine−iωt2 + t2Eine−iωt1 = Eine−iωt2ieiφ/2sin(φ/2), (8)

E2 = rtEine−iωt1 + t ′rEine−iωt2 = Eine−iωt2ieiφ/2cos(φ/2), (9)

whereω is the frequency of the input field. The intensity measurements at the detectorsD1 and
D2 becomes

I1 = |E1|2 = |Ein|2sin2(φ/2), (10)

I2 = |E2|2 = |Ein|2cos2(φ/2), (11)

respectively.
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Fig. 2. The Sagnac interferometer setup with classical input. The input field Ein is separated
by the beam splitter into two counter-propagating wavestEin and rEin. Because of the
rotation they end up at the beam splitter at different times (t1, t2).
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Fig. 3. The equivalent optical network diagram of the Sagnac interferometer for quantized
fields. “φ ” represents the phase shift provided by the rotating loop of the interferometer.
The detectorsD3 andD4 with the extra beam splitters (dashed lines) are to be used for
four-photon coincidence counting.

3.2. Quantum inputs

Now we analyze the results with quantized fields. Figure 3 shows the equivalent optical network
diagram of the interferometer. We denotea1 anda2 as the input mode operators. The two beam
splitters represent double-use of the actual beam splitter. The output modesb1 andb2 are related
to the input modes by

(
b1

b2

)

=
1√
2

(
1 i
i 1

)

︸ ︷︷ ︸

BSout

(
1 0
0 eiφ

)

︸ ︷︷ ︸

SAGNAC

1√
2

(
1 i
i 1

)

︸ ︷︷ ︸

BSin

(
a1

a2

)

,

= ieiφ/2
(

−sin(φ/2) cos(φ/2)
cos(φ/2) sin(φ/2)

)(
a1

a2

)

, (12)
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where the global phaseieiφ/2 can be dropped. The use of half-wave plate (HWP) is required
when the input ports have polarizations orthogonal to each other. Now the input and output
modes are related to each other by the linear transformation,

bi =
2

∑
j=1

Si ja j, (13)

where the matrixS of the coefficientsSi j is known as the scattering matrix associated with
the network. In fact, Eq. (13) refers to the Heisenberg picture, where the state vectors are con-
stant while operators evolve. Therefore, without knowing the Hamiltonian that describes the
evolution by the unitary operatorU on the state vectors, by using the dynamics of the operators

ai → bi =
2

∑
j=1

Si ja j ≡U†aiU, (14)

a†
i → b†

i =
2

∑
j=1

S∗i ja
†
j ≡U†a†

i U, (15)

one can calculate the probabilities for detecting certain number of photons at certain outputs.
Now, let us analyze the rotation sensitivity to the phase shift “ φ ” for some Fock state inputs.

We denoten-photons in modea1 andm-photons in modea2 by |nm〉. First, we begin with the
input state|10〉, that is a single incident photon in modea1 with the other mode in vacuum
state. The output state can be written as

U |10〉 = Ua†
1|00〉 = Ua†

1U†U |00〉 = Ua†
1U†|00〉. (16)

The last equality results from the fact that the interferometer has no effect on the vacuum
|00〉. Although we are in the Schrödinger picture, it is perfectly valid to use Eq. (15) with the
substitutionU →U† ≡U−1. This impliesS → S† resulting

Ua†
i U† =

2

∑
j=1

S jia
†
j . (17)

If we substitute Eq. (17) into Eq. (16) and use the scatteringmatrix given by Eq. (12), we find

U |10〉 = −sin(φ/2)|10〉+cos(φ/2)|01〉, (18)

up to an overall phase. Similarly we can calculate

U |11〉 =
1√
2

sin(φ)(−|20〉+ |02〉)+cos(φ)|11〉, (19)

where the input is a pair of photons, one at each of the ports 1 and 2.

3.3. Single-photon input vs. two-photon input

The Heisenberg picture is convenient for computing the expectation values of photon numbers.
For the single photon input|10〉, the intensities at the detectorsD1 andD2 reads

I1 ≡ 〈b†
1b1〉 = sin2(φ/2), (20)

I2 ≡ 〈b†
2b2〉 = cos2(φ/2), (21)
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whereas for the two-photon input|11〉, we have the single-photon counts at each detector
〈b†

1b1〉 = 1 = 〈b†
2b2〉, i.e. there is no interference. On the other hand, by using Eq. (12), we

can calculate the two-photon coincidences at the detectorsD1 andD2,

I12 ≡ 〈b†
1b†

2b2b1〉 = cos2(φ), (22)

which has twofold increase in the fringe pattern. This is also clear from the Schrödinger evo-
lution of the state given by Eq. (19). The reason of this two-fold increase lies in the fact that
when the two photons, one from each input port, enter into theloop, they transform into the
following two-photon path-entangled state,

|11〉 → |20〉+ |02〉√
2

→ |20〉+ ei2φ |02〉√
2

, (23)

which shows a two-fold reduction in the wavelength of sourcephotons. This was nicely demon-
strated in the experiment [20] using photon pairs (biphotons) generated by spontaneous PDC.

3.4. Entangled photon pairs

We now discuss how the results given by Eqs. (10) and (11) are modified under conditions
of arbitrary pumping, if we work with down-converted photons. To avoid coupling losses to a
fiber, entangled photon pairs can also be generated inside a fiber at telecom wavelengths. This
has been demonstrated by Kumar and coworkers [28]. The stateproduced in nondegenerate
parametric down conversion can be written as

|ψ〉 =
1

coshr

∞

∑
n=0

(−eiθ tanhr)n|n〉1|n〉2. (24)

This state can be generated mathematically by applying the two-mode squeeze operatorŜ =
exp(ρ∗a1a2− ρa†

1a†
2) on vacuum, whereρ = reiθ is the complex interaction parameter (also

known as the squeezing parameter) proportional to the nonlinearity of the crystal, the pump
amplitude and the crystal length. Polarization of photon pairs in the noncollinear type-I and the
collinear type-II down-conversion are the same and orthogonal respectively. At first glance, it
is easy to see that this state is nonseparable (≡ entangled) to a product of states of mode 1 and
mode 2. It is already in Schmidt-decomposed form with a Schmidt number higher than 1 for
r > 0, which is a measure of entanglement [29]. Moreover one can calculate theEntropy of
Entanglement [30], E = −Tr2ρ log2 ρ as a function ofr,

E = cosh2 r log2(cosh2 r)−sinh2 r log2(sinh2 r). (25)

The amount of entanglement given by Eq. (25) is approximately linear in r showing that the
state in Eq. (24) is fully entangled forr → ∞.

When the input modes are in the state given by the Eq. (24) the output detectorsD1 andD2

read the single counts
I1 ≡ 〈b†

1b1〉 = sinh2 r = 〈b†
2b2〉 ≡ I2, (26)

which does not give any information on the rotation. On the other hand, the two-photon co-
incidence counts, after subtracting independent counts, normalized over the product of single
counts at each detector becomes,

g2
12 =

〈b†
1b†

2b2b1〉
〈b†

1b1〉〈b†
2b2〉

−1 = cos2(φ)coth2 r, (27)
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Fig. 4. Normalized four-photon probability in coincidence in 2-by-2 (solidline) and 3-by-1
(dashed line) detection scheme described by Eqs. (32) and (34) respectively.

which is twice more sensitive to the rotation than the resultin Eq. (20) with 100% visibility. The
signal itself depends onr and it is most significant whenr ≈ 1. The regime with an interaction
parameter value ofr = 1.39 has already been reached in the experiment [31].

On the other hand, we can employ a different measurement –theprojective measurement,

P2 = Tr[|11〉〈11|ρ(φ)] ≡ |〈11|U |ψ〉|2

=
tanh2 r

cosh2 r
cos2(φ), (28)

which is the probability of detecting two photons, one at each detector operating in coincidence.
Here the stateρ(φ) = U |ψ〉〈ψ|U† is the evolved density matrix corresponding to the state
given in Eq. (24). This probability can be easily calculatedby utilizing the Schr̈odinger picture
evolution of the state vector|11〉 given in Eq. (19). The expression in Eq. (28) is a pure two-
photon interference effect showing by halving the de Broglie wavelength of the source photons.
Thus, the two-photon coincidences by using the state in Eq. (24) shows two-fold increase in the
sensitivity of the phase measurement.

The next question is– can we increase the sensitivity further by measuring higher order coin-
cidences? We suggest employment of four single-photon detectorsDi (i = 1,2,3,4) as depicted
in Fig. 3. We note that in a recent experiment [32] the tomography of the Fock state|2〉 was
done by letting the two photons propagate in different directions and by single photon detectors.
For detection of multi-photons, it is easier to use single photon detectors. We examine the co-
incidence of clicking four detectors i.e. the probability of the state|1D11D31D21D4〉 whereDi’s
denote the modes that goes into the corresponding detectors. This requires the state in modesb1

andb2 before the beam splittersBS1 andBS2 to be in a four-photon subspace. We now outline
this calculation. The four-photon coincidence detection probability is given by

P4 = |〈1D11D31D21D4|UBUS|ψ,0v10v2〉|2

= 〈1D11D31D21D4|UBUS|ψ,0v10v2〉〈ψ,0v10v2|U
†
S U†

B |1D11D31D21D4〉, (29)

where the state|ψ,0v10v2〉 represents the tensor product of the state (24) with the vacuum ports
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v1 andv2 at the beam splittersBS1 andBS2. The unitary operatorsUS andUB represent the
evolution of the states inside the Sagnac interferometer and the two beam splittersBS1 andBS2

respectively. First, we begin by calculating the inverse evolution

U†
B |1D11D31D21D4〉 = U†

BD†
1D†

3D†
2D†

4UBU†
B |0000〉

= (t∗1b†
1 + r′∗1 v†

1)(t
∗
2b†

2 + r′∗2 v†
2)(r

∗
1b†

1 + t ′∗1 v†
1)(r

∗
2b†

2 + t ′∗2 v†
2)|0000〉

= t∗1t∗2r∗1r∗2b†2
1 b†2

2 |0000〉+ . . . , (30)

where we take only four-photon state in modesb1 andb2 because other terms are irrelevant
in our calculation. Hereti’s andri’s are transmittance and reflectance coefficients of the beam
splitterBSi (i = 1,2). Next, we operateU†

S on the resultant state above,

U†
S t∗1t∗2r∗1r∗2b†2

1 b†2
2 |0000〉 = t∗1t∗2r∗1r∗2U†

S b†2
1 b†2

2 USU†
S |0000〉

= t∗1t∗2r∗1r∗2
(

−sin(φ/2)a†
1 +cos(φ/2)a†

2

)2

×
(

cos(φ/2)a†
1 +sin(φ/2)a†

2

)2
|0000〉

=

(
1
2

sin(φ)(−a†2
1 +a†2

2 )+cos(φ)a†
1a†

2

)2

|0000〉

=
1
2
[1+3cos(2φ)]|2200〉+ . . . , (31)

where we use the transformation given by Eq. (12) between themodesa1, a2 andb1, b2. In
the last line of the Eq. (31) the first two modes area1 anda2, while the last two modes are the
vacuum modes of the beam splittersBS1 andBS2. In the last line of Eq. (31) we take only the
state which has equal number of photons in modesa1 anda2 because the input state|ψ〉 is a
pair photon state which is given in Eq. (24). Therefore the absolute square of the inner product
of the resultant state given in the Eq. (31) with|ψ,0v10v2〉 gives us the four-photon coincidence
probability

P4 =
tanh4 r

cosh2 r
|t1t2r1r2|2

1
4
[1+3cos(2φ)]2. (32)

The result given by Eq. (32) shows a reduction in the period offringes by developing smaller
peaks as depicted in Fig. 4. The phase sensitivity shows a four-fold increase w.r.t. the result in
Eq. (20) obtained by single-photon input.

The four-photon coincidence detection can be done in an alternative way as depicted in figure
5. Here, three of the four photons are to be detected in the upper output channelb1 while the
fourth one goes into the detector placed in the lower output channelb2. This time, we place the
two extra beam splittersBS1 andBS2 to split up the three photons into single photons before
they arrive at the detectorsD1, D2 andD3. Now, we begin with the evolution of the four-photon
subspace term|22〉 provided by the input state|ψ〉,

|22〉 =
a†2

1√
2

a†2
2√
2
|00〉 −→ 1

2

(
iu† + l†
√

2

)2(
u† + il†
√

2

)2

|00〉

−→ −1
8
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ib†
1 +b†

2√
2

)4

+ ei4φ
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2
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+2ei2φ
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ib†
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2

)2(
b†

1 + ib†
2√

2
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|00〉

=
1
4

{

ei2φ sin(2φ)b†3
1 b†

2 + · · ·
}

|00〉
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Fig. 5. The Sagnac interferometer setup for four-photon coincidencedetection in 3-by-1
scheme.

−→ ei2φ

4
sin(2φ)

{(

r1d†
1 + t1(r2d†

2 + t2d†
3)
)3

b†
2

}

|0000〉

=
ei2φ

4
sin(2φ)

{

6r1t2
1r2t2d†

1d†
2d†

3b†
2 + · · ·

}

|0000〉

=
3
2

ei2φ sin(2φ)r1t2
1r2t2|1111〉. (33)

The arrow in the first line represents the evolution of the input modes into the interferometer
after BSin, while the second arrow shows further evolution of the modesby the phase shiftφ
andBSout . In the third line we omit the terms giving photons in the channels other than three
in b1 and one inb2. The fourth line shows how the channelb1 split up into the modesd1, d2

andd3 going into the detectorsD1, D2 andD3 respectively and since we are considering only
one photon per detector we omit the other terms in the following line. In the last line we obtain
the state corresponding to the four-photon coincidence detection in 3-by-1 scheme. Then, we
calculate the probability of four-photon coincidence to be,

P(3by1)
4 =

tanh4 r

cosh2 r
|t2

1t2r1r2|2
9
4

sin2(2φ). (34)

The normalized plot of this probability is shown in Fig. 4. Note that all the peaks are even in the
interference pattern showing a pure four-fold increase in the sensitivity. We note that Steuer-
nagel has a similar result in his work [24] on reduced de Broglie wavelength using precisely
two photon events at each detector. In our proposal above we use single photon detectors to do
four-photon coincidence. Currently efforts are on to find efficient nonlinear absorbers so that
these could be used for detection of the precise number of photons [12, 33, 34].

4. Conclusion

There are advantages of using single photon interferometeras then the unwanted effects due to
nonlinearities are avoided. However the integration time becomes long so that one can achieve
the same level of sensitivity as classical interferometers[35]. What we are demonstrating is that
we get superresolution relative to what is obtained by the usage of single photons. We think that
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experiments should be feasible because many two-photon andfour-photon interference effects
have been observed [17, 18, 19, 20, 21, 22].

There is one thing that should be in consideration in the use fiber. All fiber ring interferom-
eters make use of single-mode fibers. Normally all single-mode fibers permit the transmission
of modes of two orthogonal polarizations through the fiber inboth directions. Disturbances,
such as temperature fluctuations and mechanical stresses introduces birefringence to the fiber
causing one mode to be transferred to the other. The noise produced by the transfer of modes
from one to the other may effect the interference pattern. However by utilizing half-wave plates
and polarization controllers [28] this noise may be suppressed.
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