127 research outputs found

    Circulating Ouabain Modulates Expression of Claudins in Rat Intestine and Cerebral Blood Vessels

    Get PDF
    The ability of exogenous low ouabain concentrations to affect claudin expression and therefore epithelial barrier properties was demonstrated previously in cultured cell studies. We hypothesized that chronic elevation of circulating ouabain in vivo can affect the expression of claudins and tight junction permeability in different tissues. We tested this hypothesis in rats intraperitoneally injected with ouabain (1 μg/kg) for 4 days. Rat jejunum, colon and brain frontal lobes, which are variable in the expressed claudins and tight junction permeability, were examined. Moreover, the porcine jejunum cell line IPEC-J2 was studied. In IPEC-J2-cells, ouabain (10 nM, 19 days of incubation) stimulated epithelial barrier formation, increased transepithelial resistance and the level of cSrc-kinase activation by phosphorylation, accompanied with an increased expression of claudin-1, -5 and down-regulation of claudin-12; the expression of claudin-3, -4, -8 and tricellulin was not changed. In the jejunum, chronic ouabain increased the expression of claudin-1, -3 and -5 without an effect on claudin-2 and -4 expression. In the colon, only down-regulation of claudin-3 was observed. Chronic ouabain protected the intestine transepithelial resistance against functional injury induced by lipopolysaccharide treatment or by modeled acute microgravity; this regulation was most pronounced in the jejunum. Claudin-1 was also up-regulated in cerebral blood vessels. This was associated with reduction of claudin-3 expression while the expression of claudin-5 and occludin was not affected. Altogether, our results confirm that circulating ouabain can functionally and tissue-specifically affect barrier properties of epithelial and endothelial tissues via Na,K-ATPase-mediated modulation of claudins expression

    Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    Get PDF
    BACKGROUND AND PURPOSE: The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. EXPERIMENTAL APPROACH: HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl(-) secretion by measuring short-circuit current (I(SC)) and tracer fluxes of (22)Na(+) and (36)Cl(-). Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na(+)/K(+)-ATPase and intracellular cAMP levels (ELISA) were measured. KEY RESULTS: In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced I(SC) within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced I(SC) was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na(+)/K(+)-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na(+)/K(+)-ATPase. CONCLUSION AND IMPLICATIONS: Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na(+)/K(+)-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea

    Overexpression of CD97 in Intestinal Epithelial Cells of Transgenic Mice Attenuates Colitis by Strengthening Adherens Junctions

    Get PDF
    The adhesion G-protein-coupled receptor CD97 is present in normal colonic enterocytes but overexpressed in colorectal carcinoma. To investigate the function of CD97 in colorectal carcinogenesis, transgenic Tg(villin-CD97) mice overexpressing CD97 in enterocytes were generated and subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated tumorigenesis. Unexpectedly, we found a CD97 cDNA copy number-dependent reduction of DSS-induced colitis in Tg compared to wild-type (WT) mice that was confirmed by applying a simple DSS protocol. Ultrastructural analysis revealed that overexpression of CD97 strengthened lateral cell-cell contacts between enterocytes, which, in contrast, were weakened in CD97 knockout (Ko) mice. Transepithelial resistance was not altered in Tg and Ko mice, indicating that tight junctions were not affected. In Tg murine and normal human colonic enterocytes as well as in colorectal cell lines CD97 was localized preferentially in E-cadherin-based adherens junctions. CD97 overexpression upregulated membrane-bound but not cytoplasmic or nuclear β-catenin and reduced phospho-β-catenin, labeled for degradation. This was associated with inactivation of glycogen synthase kinase-3β (GSK-3β) and activation of Akt. In summary, CD97 increases the structural integrity of enterocytic adherens junctions by increasing and stabilizing junctional β-catenin, thereby regulating intestinal epithelial strength and attenuating experimental colitis

    Oral and Fecal Campylobacter concisus Strains Perturb Barrier Function by Apoptosis Induction in HT-29/B6 Intestinal Epithelial Cells

    Get PDF
    Campylobacter concisus infections of the gastrointestinal tract can be accompanied by diarrhea and inflammation, whereas colonization of the human oral cavity might have a commensal nature. We focus on the pathophysiology of C. concisus and the effects of different clinical oral and fecal C. concisus strains on human HT-29/B6 colon cells. Six oral and eight fecal strains of C. concisus were isolated. Mucus-producing HT-29/B6 epithelial monolayers were infected with the C. concisus strains. Transepithelial electrical resistance (Rt) and tracer fluxes of different molecule size were measured in Ussing chambers. Tight junction (TJ) protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29/B6 cells and impaired epithelial barrier function, characterized by a time- and dose-dependent decrease in Rt either after infection from the apical side but even more from the basolateral compartment. TJ protein expression changes were sparse, only in apoptotic areas of infected monolayers TJ proteins were redistributed. Solely the barrier-forming TJ protein claudin-5 showed a reduced expression level to 66±8% (P<0.05), by expression regulation from the gene. Concomitantly, Lactate dehydrogenase release was elevated to 3.1±0.3% versus 0.7±0.1% in control (P<0.001), suggesting cytotoxic effects. Furthermore, oral and fecal C. concisus strains elevated apoptotic events to 5-fold. C. concisus-infected monolayers revealed an increased permeability for 332 Da fluorescein (1.74±0.13 vs. 0.56±0.17 10−6 cm/s in control, P<0.05) but showed no difference in permeability for 4 kDa FITC-dextran (FD-4). The same was true in camptothecin-exposed monolayers, where camptothecin was used for apoptosis induction

    Protein Kinase C Activation Has Distinct Effects on the Localization, Phosphorylation and Detergent Solubility of the Claudin Protein Family in Tight and Leaky Epithelial Cells

    Get PDF
    We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier

    A Claudin-9–Based Ion Permeability Barrier Is Essential for Hearing

    Get PDF
    Hereditary hearing loss is one of the most common birth defects, yet the majority of genes required for audition is thought to remain unidentified. Ethylnitrosourea (ENU)–mutagenesis has been a valuable approach for generating new animal models of deafness and discovering previously unrecognized gene functions. Here we report on the characterization of a new ENU–induced mouse mutant (nmf329) that exhibits recessively inherited deafness. We found a widespread loss of sensory hair cells in the hearing organs of nmf329 mice after the second week of life. Positional cloning revealed that the nmf329 strain carries a missense mutation in the claudin-9 gene, which encodes a tight junction protein with unknown biological function. In an epithelial cell line, heterologous expression of wild-type claudin-9 reduced the paracellular permeability to Na+ and K+, and the nmf329 mutation eliminated this ion barrier function without affecting the plasma membrane localization of claudin-9. In the nmf329 mouse line, the perilymphatic K+ concentration was found to be elevated, suggesting that the cochlear tight junctions were dysfunctional. Furthermore, the hair-cell loss in the claudin-9–defective cochlea was rescued in vitro when the explanted hearing organs were cultured in a low-K+ milieu and in vivo when the endocochlear K+-driving force was diminished by deletion of the pou3f4 gene. Overall, our data indicate that claudin-9 is required for the preservation of sensory cells in the hearing organ because claudin-9–defective tight junctions fail to shield the basolateral side of hair cells from the K+-rich endolymph. In the tight-junction complexes of hair cells, claudin-9 is localized specifically to a subdomain that is underneath more apical tight-junction strands formed by other claudins. Thus, the analysis of claudin-9 mutant mice suggests that even the deeper (subapical) tight-junction strands have biologically important ion barrier function

    Loss of Guanylyl Cyclase C (GCC) Signaling Leads to Dysfunctional Intestinal Barrier

    Get PDF
    Guanylyl Cyclase C (GCC) signaling via uroguanylin (UGN) and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT) and GCC deficient (GCC-/-) mice with and without lipopolysaccharide (LPS) challenge, as well as in UGN deficient (UGN-/-) mice. IFNγ and myosin light chain kinase (MLCK) levels were determined by real time PCR. Expression of tight junction proteins (TJPs), phosphorylation of myosin II regulatory light chain (MLC), and STAT1 activation were examined in intestinal epithelial cells (IECs) and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi). We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury
    corecore