1,361 research outputs found

    Topology of multiple log transforms of 4-manifolds

    Full text link
    Given a 4-manifold X and an imbedding of T^{2} x B^2 into X, we describe an algorithm X --> X_{p,q} for drawing the handlebody of the 4-manifold obtained from X by (p,q)-logarithmic transforms along the parallel tori. By using this algorithm, we obtain a simple handle picture of the Dolgachev surface E(1)_{p,q}, from that we deduce that the exotic copy E(1)_{p,q} # 5(-CP^2) of E(1) # 5(-CP^2) differs from the original one by a codimension zero simply connected Stein submanifold M_{p,q}, which are therefore examples of infinitely many Stein manifolds that are exotic copies of each other (rel boundaries). Furthermore, by a similar method we produce infinitely many simply connected Stein submanifolds Z_{p} of E(1)_{p,2} # 2(-CP^2)$ with the same boundary and the second Betti number 2, which are (absolutely) exotic copies of each other; this provides an alternative proof of a recent theorem of the author and Yasui [AY4]. Also, by using the description of S^2 x S^2 as a union of two cusps glued along their boundaries, and by using this algorithm, we show that multiple log transforms along the tori in these cusps do not change smooth structure of S^2 x S^2.Comment: Updated, with 17 pages 21 figure

    Liouville Vortex And φ4\varphi^{4} Kink Solutions Of The Seiberg--Witten Equations

    Full text link
    The Seiberg--Witten equations, when dimensionally reduced to \bf R^{2}\mit, naturally yield the Liouville equation, whose solutions are parametrized by an arbitrary analytic function g(z)g(z). The magnetic flux Φ\Phi is the integral of a singular Kaehler form involving g(z)g(z); for an appropriate choice of g(z)g(z) , NN coaxial or separated vortex configurations with Φ=2πNe\Phi=\frac{2\pi N}{e} are obtained when the integral is regularized. The regularized connection in the \bf R^{1}\mit case coincides with the kink solution of φ4\varphi^{4} theory.Comment: 14 pages, Late

    Topological quantum D-branes and wild embeddings from exotic smooth R^4

    Full text link
    This is the next step of uncovering the relation between string theory and exotic smooth R^4. Exotic smoothness of R^4 is correlated with D6 brane charges in IIA string theory. We construct wild embeddings of spheres and relate them to a class of topological quantum Dp-branes as well to KK theory. These branes emerge when there are non-trivial NS-NS H-fluxes where the topological classes are determined by wild embeddings S^2 -> S^3. Then wild embeddings of higher dimensional pp-complexes into S^n correspond to Dp-branes. These wild embeddings as constructed by using gropes are basic objects to understand exotic smoothness as well Casson handles. Next we build C*-algebras corresponding to the embeddings. Finally we consider topological quantum D-branes as those which emerge from wild embeddings in question. We construct an action for these quantum D-branes and show that the classical limit agrees with the Born-Infeld action such that flat branes = usual embeddings.Comment: 18 pages, 1 figur

    Solutions of the Einstein-Dirac and Seiberg-Witten Monopole Equations

    Full text link
    We present unique solutions of the Seiberg-Witten Monopole Equations in which the U(1) curvature is covariantly constant, the monopole Weyl spinor consists of a single constant component, and the 4-manifold is a product of two Riemann surfaces of genuses p_1 and p_2. There are p_1 -1 magnetic vortices on one surface and p_2 - 1 electric ones on the other, with p_1 + p_2 \geq 2 p_1 = p_2= 1 being excluded). When p_1 = p_2, the electromagnetic fields are self-dual and one also has a solution of the coupled euclidean Einstein-Maxwell-Dirac equations, with the monopole condensate serving as cosmological constant. The metric is decomposable and the electromagnetic fields are covariantly constant as in the Bertotti-Robinson solution. The Einstein metric can also be derived from a K\"{a}hler potential satisfying the Monge-Amp\`{e}re equations.Comment: 22 pages. Rep. no: FGI-99-

    Witten's conjecture and Property P

    Full text link
    Let K be a non-trivial knot in the 3-sphere and let Y be the 3-manifold obtained by surgery on K with surgery-coefficient 1. Using tools from gauge theory and symplectic topology, it is shown that the fundamental group of Y admits a non-trivial homomorphism to the group SO(3). In particular, Y cannot be a homotopy-sphere.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper7.abs.html Version 5: links correcte

    Brieskorn manifolds as contact branched covers of spheres

    Full text link
    We show that Brieskorn manifolds with their standard contact structures are contact branched coverings of spheres. This covering maps a contact open book decomposition of the Brieskorn manifold onto a Milnor open book of the sphere.Comment: 8 pages, 1 figur

    Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations

    Full text link
    We discuss the possible relevance of some recent mathematical results and techniques on four-manifolds to physics. We first suggest that the existence of uncountably many R^4's with non-equivalent smooth structures, a mathematical phenomenon unique to four dimensions, may be responsible for the observed four-dimensionality of spacetime. We then point out the remarkable fact that self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean signature without affecting the metric. As a specific example, we consider solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are covariantly constant, the monopole Weyl spinor has only a single constant component, and the 4-manifold M_4 is a product of two Riemann surfaces Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric) vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being excluded). When the two genuses are equal, the electromagnetic fields are self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000, Istanbu

    Constructions of generalized complex structures in dimension four

    Full text link
    Four-manifold theory is employed to study the existence of (twisted) generalized complex structures. It is shown that there exist (twisted) generalized complex structures that have more than one type change loci. In an example-driven fashion, (twisted) generalized complex structures are constructed on a myriad of four-manifolds, both simply and non-simply connected, which are neither complex nor symplectic

    On the geometrization of matter by exotic smoothness

    Full text link
    In this paper we discuss the question how matter may emerge from space. For that purpose we consider the smoothness structure of spacetime as underlying structure for a geometrical model of matter. For a large class of compact 4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of Fintushel and Stern to change the smoothness structure. The influence of this surgery to the Einstein-Hilbert action is discussed. Using the Weierstrass representation, we are able to show that the knotted torus used in knot surgery is represented by a spinor fulfilling the Dirac equation and leading to a mass-less Dirac term in the Einstein-Hilbert action. For sufficient complicated links and knots, there are "connecting tubes" (graph manifolds, torus bundles) which introduce an action term of a gauge field. Both terms are genuinely geometrical and characterized by the mean curvature of the components. We also discuss the gauge group of the theory to be U(1)xSU(2)xSU(3).Comment: 30 pages, 3 figures, svjour style, complete reworking now using Fintushel-Stern knot surgery of elliptic surfaces, discussion of Lorentz metric and global hyperbolicity for exotic 4-manifolds added, final version for publication in Gen. Rel. Grav, small typos errors fixe

    Exotic Smoothness and Quantum Gravity

    Full text link
    Since the first work on exotic smoothness in physics, it was folklore to assume a direct influence of exotic smoothness to quantum gravity. Thus, the negative result of Duston (arXiv:0911.4068) was a surprise. A closer look into the semi-classical approach uncovered the implicit assumption of a close connection between geometry and smoothness structure. But both structures, geometry and smoothness, are independent of each other. In this paper we calculate the "smoothness structure" part of the path integral in quantum gravity assuming that the "sum over geometries" is already given. For that purpose we use the knot surgery of Fintushel and Stern applied to the class E(n) of elliptic surfaces. We mainly focus our attention to the K3 surfaces E(2). Then we assume that every exotic smoothness structure of the K3 surface can be generated by knot or link surgery a la Fintushel and Stern. The results are applied to the calculation of expectation values. Here we discuss the two observables, volume and Wilson loop, for the construction of an exotic 4-manifold using the knot 525_{2} and the Whitehead link WhWh. By using Mostow rigidity, we obtain a topological contribution to the expectation value of the volume. Furthermore we obtain a justification of area quantization.Comment: 16 pages, 1 Figure, 1 Table subm. Class. Quant. Grav
    corecore