1,361 research outputs found
Topology of multiple log transforms of 4-manifolds
Given a 4-manifold X and an imbedding of T^{2} x B^2 into X, we describe an
algorithm X --> X_{p,q} for drawing the handlebody of the 4-manifold obtained
from X by (p,q)-logarithmic transforms along the parallel tori. By using this
algorithm, we obtain a simple handle picture of the Dolgachev surface
E(1)_{p,q}, from that we deduce that the exotic copy E(1)_{p,q} # 5(-CP^2) of
E(1) # 5(-CP^2) differs from the original one by a codimension zero simply
connected Stein submanifold M_{p,q}, which are therefore examples of infinitely
many Stein manifolds that are exotic copies of each other (rel boundaries).
Furthermore, by a similar method we produce infinitely many simply connected
Stein submanifolds Z_{p} of E(1)_{p,2} # 2(-CP^2)$ with the same boundary and
the second Betti number 2, which are (absolutely) exotic copies of each other;
this provides an alternative proof of a recent theorem of the author and Yasui
[AY4]. Also, by using the description of S^2 x S^2 as a union of two cusps
glued along their boundaries, and by using this algorithm, we show that
multiple log transforms along the tori in these cusps do not change smooth
structure of S^2 x S^2.Comment: Updated, with 17 pages 21 figure
Liouville Vortex And Kink Solutions Of The Seiberg--Witten Equations
The Seiberg--Witten equations, when dimensionally reduced to \bf R^{2}\mit,
naturally yield the Liouville equation, whose solutions are parametrized by an
arbitrary analytic function . The magnetic flux is the integral of
a singular Kaehler form involving ; for an appropriate choice of ,
coaxial or separated vortex configurations with are
obtained when the integral is regularized. The regularized connection in the
\bf R^{1}\mit case coincides with the kink solution of theory.Comment: 14 pages, Late
Topological quantum D-branes and wild embeddings from exotic smooth R^4
This is the next step of uncovering the relation between string theory and
exotic smooth R^4. Exotic smoothness of R^4 is correlated with D6 brane charges
in IIA string theory. We construct wild embeddings of spheres and relate them
to a class of topological quantum Dp-branes as well to KK theory. These branes
emerge when there are non-trivial NS-NS H-fluxes where the topological classes
are determined by wild embeddings S^2 -> S^3. Then wild embeddings of higher
dimensional -complexes into S^n correspond to Dp-branes. These wild
embeddings as constructed by using gropes are basic objects to understand
exotic smoothness as well Casson handles. Next we build C*-algebras
corresponding to the embeddings. Finally we consider topological quantum
D-branes as those which emerge from wild embeddings in question. We construct
an action for these quantum D-branes and show that the classical limit agrees
with the Born-Infeld action such that flat branes = usual embeddings.Comment: 18 pages, 1 figur
Solutions of the Einstein-Dirac and Seiberg-Witten Monopole Equations
We present unique solutions of the Seiberg-Witten Monopole Equations in which
the U(1) curvature is covariantly constant, the monopole Weyl spinor consists
of a single constant component, and the 4-manifold is a product of two Riemann
surfaces of genuses p_1 and p_2. There are p_1 -1 magnetic vortices on one
surface and p_2 - 1 electric ones on the other, with p_1 + p_2 \geq 2 p_1 =
p_2= 1 being excluded). When p_1 = p_2, the electromagnetic fields are
self-dual and one also has a solution of the coupled euclidean
Einstein-Maxwell-Dirac equations, with the monopole condensate serving as
cosmological constant. The metric is decomposable and the electromagnetic
fields are covariantly constant as in the Bertotti-Robinson solution. The
Einstein metric can also be derived from a K\"{a}hler potential satisfying the
Monge-Amp\`{e}re equations.Comment: 22 pages. Rep. no: FGI-99-
Witten's conjecture and Property P
Let K be a non-trivial knot in the 3-sphere and let Y be the 3-manifold
obtained by surgery on K with surgery-coefficient 1. Using tools from gauge
theory and symplectic topology, it is shown that the fundamental group of Y
admits a non-trivial homomorphism to the group SO(3). In particular, Y cannot
be a homotopy-sphere.Comment: Published by Geometry and Topology at
http://www.maths.warwick.ac.uk/gt/GTVol8/paper7.abs.html Version 5: links
correcte
Brieskorn manifolds as contact branched covers of spheres
We show that Brieskorn manifolds with their standard contact structures are
contact branched coverings of spheres. This covering maps a contact open book
decomposition of the Brieskorn manifold onto a Milnor open book of the sphere.Comment: 8 pages, 1 figur
Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations
We discuss the possible relevance of some recent mathematical results and
techniques on four-manifolds to physics. We first suggest that the existence of
uncountably many R^4's with non-equivalent smooth structures, a mathematical
phenomenon unique to four dimensions, may be responsible for the observed
four-dimensionality of spacetime. We then point out the remarkable fact that
self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean
signature without affecting the metric. As a specific example, we consider
solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are
covariantly constant, the monopole Weyl spinor has only a single constant
component, and the 4-manifold M_4 is a product of two Riemann surfaces
Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric)
vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being
excluded). When the two genuses are equal, the electromagnetic fields are
self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole
condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000,
Istanbu
Constructions of generalized complex structures in dimension four
Four-manifold theory is employed to study the existence of (twisted)
generalized complex structures. It is shown that there exist (twisted)
generalized complex structures that have more than one type change loci. In an
example-driven fashion, (twisted) generalized complex structures are
constructed on a myriad of four-manifolds, both simply and non-simply
connected, which are neither complex nor symplectic
On the geometrization of matter by exotic smoothness
In this paper we discuss the question how matter may emerge from space. For
that purpose we consider the smoothness structure of spacetime as underlying
structure for a geometrical model of matter. For a large class of compact
4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of
Fintushel and Stern to change the smoothness structure. The influence of this
surgery to the Einstein-Hilbert action is discussed. Using the Weierstrass
representation, we are able to show that the knotted torus used in knot surgery
is represented by a spinor fulfilling the Dirac equation and leading to a
mass-less Dirac term in the Einstein-Hilbert action. For sufficient complicated
links and knots, there are "connecting tubes" (graph manifolds, torus bundles)
which introduce an action term of a gauge field. Both terms are genuinely
geometrical and characterized by the mean curvature of the components. We also
discuss the gauge group of the theory to be U(1)xSU(2)xSU(3).Comment: 30 pages, 3 figures, svjour style, complete reworking now using
Fintushel-Stern knot surgery of elliptic surfaces, discussion of Lorentz
metric and global hyperbolicity for exotic 4-manifolds added, final version
for publication in Gen. Rel. Grav, small typos errors fixe
Exotic Smoothness and Quantum Gravity
Since the first work on exotic smoothness in physics, it was folklore to
assume a direct influence of exotic smoothness to quantum gravity. Thus, the
negative result of Duston (arXiv:0911.4068) was a surprise. A closer look into
the semi-classical approach uncovered the implicit assumption of a close
connection between geometry and smoothness structure. But both structures,
geometry and smoothness, are independent of each other. In this paper we
calculate the "smoothness structure" part of the path integral in quantum
gravity assuming that the "sum over geometries" is already given. For that
purpose we use the knot surgery of Fintushel and Stern applied to the class
E(n) of elliptic surfaces. We mainly focus our attention to the K3 surfaces
E(2). Then we assume that every exotic smoothness structure of the K3 surface
can be generated by knot or link surgery a la Fintushel and Stern. The results
are applied to the calculation of expectation values. Here we discuss the two
observables, volume and Wilson loop, for the construction of an exotic
4-manifold using the knot and the Whitehead link . By using Mostow
rigidity, we obtain a topological contribution to the expectation value of the
volume. Furthermore we obtain a justification of area quantization.Comment: 16 pages, 1 Figure, 1 Table subm. Class. Quant. Grav
- …
