620 research outputs found

    Spectral Oscillations, Periodic Orbits, and Scaling

    Full text link
    The eigenvalue density of a quantum-mechanical system exhibits oscillations, determined by the closed orbits of the corresponding classical system; this relationship is simple and strong for waves in billiards or on manifolds, but becomes slightly muddy for a Schrodinger equation with a potential, where the orbits depend on the energy. We discuss several variants of a way to restore the simplicity by rescaling the coupling constant or the size of the orbit or both. In each case the relation between the oscillation frequency and the period of the orbit is inspected critically; in many cases it is observed that a characteristic length of the orbit is a better indicator. When these matters are properly understood, the periodic-orbit theory for generic quantum systems recovers the clarity and simplicity that it always had for the wave equation in a cavity. Finally, we comment on the alleged "paradox" that semiclassical periodic-orbit theory is more effective in calculating low energy levels than high ones.Comment: 19 pages, RevTeX4 with PicTeX. Minor improvements in content, new references, typos correcte

    Mass Dependence of Vacuum Energy

    Get PDF
    The regularized vacuum energy (or energy density) of a quantum field subjected to static external conditions is shown to satisfy a certain partial differential equation with respect to two variables, the mass and the "time" (ultraviolet cutoff parameter). The equation is solved to provide integral expressions for the regularized energy (more precisely, the cylinder kernel) at positive mass in terms of that for zero mass. Alternatively, for fixed positive mass all coefficients in the short-time asymptotics of the regularized energy can be obtained recursively from the first nontrivial coefficient, which is the renormalized vacuum energy.Comment: 8 pages, RevTeX; v.2 has minor updates and format change

    Repulsive Casimir Pistons

    Get PDF
    Casimir pistons are models in which finite Casimir forces can be calculated without any suspect renormalizations. It has been suggested that such forces are always attractive. We present three scenarios in which that is not true. Two of these depend on mixing two types of boundary conditions. The other, however, is a simple type of quantum graph in which the sign of the force depends upon the number of edges.Comment: 4 pages, 2 figures; RevTeX. Minor additions and correction

    Distributional Asymptotic Expansions of Spectral Functions and of the Associated Green Kernels

    Full text link
    Asymptotic expansions of Green functions and spectral densities associated with partial differential operators are widely applied in quantum field theory and elsewhere. The mathematical properties of these expansions can be clarified and more precisely determined by means of tools from distribution theory and summability theory. (These are the same, insofar as recently the classic Cesaro-Riesz theory of summability of series and integrals has been given a distributional interpretation.) When applied to the spectral analysis of Green functions (which are then to be expanded as series in a parameter, usually the time), these methods show: (1) The "local" or "global" dependence of the expansion coefficients on the background geometry, etc., is determined by the regularity of the asymptotic expansion of the integrand at the origin (in "frequency space"); this marks the difference between a heat kernel and a Wightman two-point function, for instance. (2) The behavior of the integrand at infinity determines whether the expansion of the Green function is genuinely asymptotic in the literal, pointwise sense, or is merely valid in a distributional (cesaro-averaged) sense; this is the difference between the heat kernel and the Schrodinger kernel. (3) The high-frequency expansion of the spectral density itself is local in a distributional sense (but not pointwise). These observations make rigorous sense out of calculations in the physics literature that are sometimes dismissed as merely formal.Comment: 34 pages, REVTeX; very minor correction

    The Dirichlet-to-Robin Transform

    Full text link
    A simple transformation converts a solution of a partial differential equation with a Dirichlet boundary condition to a function satisfying a Robin (generalized Neumann) condition. In the simplest cases this observation enables the exact construction of the Green functions for the wave, heat, and Schrodinger problems with a Robin boundary condition. The resulting physical picture is that the field can exchange energy with the boundary, and a delayed reflection from the boundary results. In more general situations the method allows at least approximate and local construction of the appropriate reflected solutions, and hence a "classical path" analysis of the Green functions and the associated spectral information. By this method we solve the wave equation on an interval with one Robin and one Dirichlet endpoint, and thence derive several variants of a Gutzwiller-type expansion for the density of eigenvalues. The variants are consistent except for an interesting subtlety of distributional convergence that affects only the neighborhood of zero in the frequency variable.Comment: 31 pages, 5 figures; RevTe
    • …
    corecore