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Abstract

The regularized vacuum energy (or energy density) of a quantum field subjected to static external conditions is shown to
satisfy a certain partial differential equation with respect to two variables, the mass and the “time” (ultraviolet cutoff parameter).
The equation is solved to provide integral expressions for the regularized energy (more precisely, the cylinder kernel) at positive
mass in terms of that for zero mass. Alternatively, for fixed positive mass all coefficients in the short-time asymptotics of the
regularized energy can be obtained recursively from the first nontrivial coefficient, which is the renormalized vacuum energy.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Background space-dependent external potentials or curved back-
ground geometries. Although massive Casimir-type
effects in the simplest geometries tend to be exponen-
tially damped relative to their massless counterparts,
they can be less negligible in other geometflesSec-
tions 7.4-7.5]

The massive field in one-dimensional space was
studied by Hay§?]. (See als§3-5].) Perhaps the most
notable feature of the results is the presence of a log-
arithmic divergence, absent from the massless case.
Although physically harmless in the context of the
one-dimensional bag modg,3], a logarithmic diver-
gence is regarded as particularly problematic by some
theorists because it is not automatically eliminated by
dimensional or zeta-function regularization.
~ E-mail address fulling@math.tamu.ed(S.A. Fulling). As | have stressed elsewhg6e-8], vacuum energy

URL: http://www.math.tamu.edu/~fulling is one of a series of moments of the spectral distribu-

The experimentally documented physical relevance
of vacuum energy involves the electromagnetic field
(the Casimir effect). Other theoretical work also usu-
ally considers massless fields (scalar fields for calcu-
lational and conceptual simplicity; neutrinos or gluons
for more exotic or speculative applications). Never-
theless, the vacuum energy of a quantum field with
mass is of theoretical importance. Adding the mass
term is the simplest generalization of the basic model
of a massless scalar field in an empty flat cavity,
a step toward the more complicated scenarios with
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tion of the differential operator appearing in the field
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Formally, the vacuum energy of the quantized field

equation; these quantities arise as the coefficients in configuration is

the short-time asymptotics of a certain Green function,
the “cylinder kernel”. The diagonal value of the latter
is, up to a differentiation and a numerical factor, the
regularized vacuum energy defined by an ultraviolet
cutoff (with the time variable as the cutoff parameter)
[2,3,9] Thus the vacuum energy (regardless of experi-
mental relevance) is of mathematical interest as a tool
of spectral analysis. The cylinder-kernel coefficients
incorporate nonlocal geometrical information that is
not extractable from the much-studied short-time as-
ymptotic expansion of the heat kernel. (The cylinder
kernel is minus twice the-derivative of the Green
function employed irf2,3].)

2. Notation

Consider a field equation of the ty[%éf =—H¢,
where

w=m?,

H = Ho+ p, 1)
andHy is a self-adjoint second-order differential oper-
ator in the spatial variables, such-a¥2. For simplic-

ity (although the treatment of local energy density is

1 d
——=|lim —TrT,
2t—00t

1 o
E:Eanz (5)
n=1

and one possible definition (s€&8]) of the vacuum
energy density is

1 o
Too(x) = 5 D ontn ()n ()"

n=1

d
lim —T .
2t—0 0t (t’x’X)

(6)

In reality, the limits in(5) and(6) do not exist, but
TrT andT (¢, x, x) possess asymptotic expansions as
t | 0 of the form[6,9-11]

o0 o
T~ et™+ Y fum ™ ine, (7)
s=0 s=d+1
s—d odd

where the coefficients of the divergent terms are sim-
ple, local objects that can be absorbed by renormal-
ization. (Hered is the spatial dimension.) Therefore,
one regard¢3) and (4), after operation by—%a%, as
theregularized energy and energy density, and one re-
gards—% times the coefficient of the term of order

actually more general) assume that the spatial domainin (3) and(4) as therenormalized energy and energy

is compact andd has a discrete, positive spectrum
{a),f} with orthonormal eigenfunction,, (x)}.

For auxiliary mathematical purposes one studies
the heat kernel

o]

K. y) = (xleH1y) =3 e g, (x)du ()
n=1
2
and thecylinder (Poisson) kernel
T(t.x.y) = (xle™™ ) = 3 ey (1) ()"
n=1
3

Each of these can be “traced” over space; for example,

0
T = / (xle™ VA xydx = 3 eon, (4)
n=1

density:

E orTpo=

(8)

Similarly, if K stands for either TK or K (¢, x, x),
it has an expansion of the form

1
—§€d+1-

o0
K~ b2, (9)
s=0

3. Themain equation

The coefficients in7) and (9) are functions ofu.
Let us writeT (u, t) andK (u, t) for the quantities be-
ing expanded and writg (i), etc., for the coefficients.
In the case of the heat kernel, it is elementary that

K(u,t) =K(O,t)e ™, (20)
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and from (10) it is routine to find formulas for the
bs() in terms ofby (0) (s’ < s). For the cylinder ker-
nel it is clear that no elementary factorization 1{{®)

occurs, and hence the mass dependence is much more

interesting and nontrivial.
On the other hand10) is equivalent to the differ-
ential equation

K

— =—tK.
i

The goal of the present Letter is to find, as nearly
as possible, an analogue @f1) for the quantities
T(u,t) related to vacuum energy. Sinee, (1) =

V,(0)2 4 u, it is easy to show frond) or (3) that
2 (T\ T

ot ( t ) T2

which is the central equation of this Letter. The vari-

ablest andu naturally range from 0 te-oo.

If its right side were zero(12) would be math-
ematically equivalent to the massless wave equation
in two-dimensional space—time written in null (light
cone) coordinates; as is well known, its general solu-
tion would then bel" (u, t)/t = A(t) + B(u), whereA
andB are arbitrary functions. The full equati¢h?)is
of the same hyperbolic type, and one can again ex-
pect the general solution to involve two arbitrary one-
variable functions. One of these should be the “initial
value” T'(0, ¢), in analogy with(10). The remaining
boundary condition is (c{3)—(4))

11)

(12)

tﬂToo T(u,t)=0. (13)

4. Solution by Laplace transform

Let F (s, ) be the Laplace transform af (u, 1)/t
with respect tqu. Then(12)is equivalent to

JAF _9TOn 1o
Yar e 1 2
ie.,
dF t d T(0, t)
— 14
dt 25 at st (14)
The solution of(14) consistent with(13) is
r 3 T(O
Fs.1) = —e' /% / o 2 T0Y (15)
v sv

t
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Equivalently,

o]

1
ﬁetz/‘]‘?/efvz/‘hT(O, v)dv.
s

T(0,1) _
st

F(s, 1) =
t
(16)
Thus, in principle, T (u,t) can be calculated from
T(0, v).

Indeed, the inverse Laplace transform can be per-
formed at the kernel level (under the integral sign in
(15)or (16)) [12, p. 1026]

) v

(17)

[ee]

/ Jo(m\/H) P (

t

T(0,v)
v

T(p, 1) _
t

or

T(w,t)=T(O,1)

o0
mdv
2 __ 42
vz_tle(m\/v t )T(O, V).

(18)
A change of variabley? = v? — r?) converts(18)to

T(u,t)=T(,¢1)

o]

\/7J1(mw)T(0 Vw2 +12),

(19)
and there is a similar variant ¢£7).

4.1. Example 1

The cylinder kernel of the free massless scalar field
in spatial dimensiod is
I'(c)mr =t
(12 + 22’
wherez = |x — y| is the spatial separation and=
%(d +1). According to(17), therefore,

TO,,X,y) = (20)

00
(21)
From[14, p. 425]follows
T(m?,1,%,y) = 227~ m 1 (12 + 22) "/
X Kc(m\/m), (22)
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which is the correct formulafor the cylinder kernel
of the free field of mass:. All the solution formulas
for problems with infinite flat boundaries now follow
by the method of images.

4.2. Example 2

Letd =1 and consider an interval of lengthwith
Dirichlet boundary conditions. For the massless case
the solution by images can be summed in closed form
[6, (23) and (27)with the result

1 sinh(zt/L)
Tro.n= 2coshmt/L)—1 2
We apply(19) and (5) and compare with the conclu-
sions of Hayq2] about the renormalized total energy
in the massive case (finding complete agreement). It is
convenient to separate out the contribution of the free
Green functior(20) (with ¢ =1, z =0, and integrated
over O< x < L), because that is where all the diver-
gences lie. That is, in both places(9) write

! (23)

L L
T, v)= p— + |:T(0, V) — Ei|

When we apply the operater; lim,_.o 2 to (19) we
thus encounter four terms:

e The divergent term
L

212

(present already in empty space) is the mass-

independent part of the renormalization of the bag

constant in2, (3.10)]

The remaining (bracket) contribution of the first

term in (19) is the familiar massless Casimir en-

ergy,
7T

- 24L
(It comes from theO () term in the Taylor ex-
pansion of(23). Regrettably, that crucial term is
written in[6, (27)] with the wrong sign.)

(24)

(25)

1 The Bender—Hays Green functi@®3] is the Green function of
the Helmholtz equation in one higher dimensiga,v2 — 5722 +
m?]G = §(1)8 (). In the free case this kernel is knob, (4.25)]

and is proportional t._1 (m+/t2 + z2). Differentiation and a re-
cursion relation for the modified Bessel function then lea(P®).

SA. Fulling / Physics Letters B 624 (2005) 281-286

e The contribution of the free Green function to the
integral in(19) works out to

m2Lt n mt +@c 1)m2Lt

2 2 A

(C = 0.577..., Euler's constant). The corre-
sponding term in the regularized energy,
——

mt m?L

e ”( 2) @+ D5
is the mass-dependent part of the renormalization
[2, (3.10)] It, also, is present in empty space. (It
includes a finite term, proportional @?L, which
is actually ambiguous in the sense that the scale
factor in the argument of the logarithm function is
arbitrary.)
The remaining (bracket) part of the integral splits
into two disparate pieces.
— The term—3 in (23) contribute$

1. 9
——lim — ——

—mt\ __
410 9t )= 4

to the energy, in agreement wifR, (3.15)]
This constant term, associated with paths that
reflect from the boundaries an odd number of
times[2, Section 4] represents the energy of
interaction of the massive field with the two
boundaries separately (i.e., it survives when
approaches infinity, and it does not contribute
to the Casimir force).

What remains is the contribution of the paths
that reflect an even number of times; it is the
mass-dependent part of the true Casimir energy.
In our present approach it equals

m]ojl(mw)[ 2Li|
= — = aw
4 w Tw

0
o0
m/J mLu 2
4 ! T u
0

2
m<L (26)

m

(1- 27)

sinh(rw/L)
cosimrw/L) —1

)[e=o(z)

du
7 .
(28)

2 This follows from[13, (6.552.1)]and the power series of the

Bessel functions.

3 The error made by setting= 0 inside the integrand of this term
of (19) before differentiating is of orde” In¢, so it vanishes in the
limit.
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In Hays's approack2, (3.11) and (3.13)it ap-

pears as
m i Ki(2mLs) w 29)
2n s 24L

(since Hays’s sum includes the massless Casi-
mir energy,(25)). The equivalence of28) and
(29)is not obvious, but it can be verified by the
method of{14, p. 427] (It has also been tested
numerically.) We claim no practical advantage
for the integral, since the sum converges faster.

5. Partial solution by recursion

Rarely will one of the integral€l5)—(19)be evalu-
able analytically in any particular case. Moreover,
T(0,t) often will not be available for arbitrarily
larget. It is worthwhile, therefore, to see how much in-
formation can be obtained from the known asymptotic
structure(7) if the coefficients forn = 0 are known.

By substituting(7) into (12) one obtains

> de
D (—d+s—1)—Srdt2
au

s=0
o0
d '
+ Z (—d+s—1)£f‘“”*zlnt
o
s=d+1
s—d odd
o0
. 2_fft7d+x72
s=d+1 H
s—d odd
N €52 N fi2
_ 5=2 —d+ts—2 5=2 —d+ts—2
_Zzt s +Z—2t S=2|n¢.
s=2 s=d+3
s—d odd
(30)
Therefore, we have the recursion relations
0 _
(—d 45— 1) Ji2 (31)
ou 2
for s — d odd and positive, and
des  es_2  Ofs
(—d+s )Em 7 o (32)

for all nonnegative integers, the terms being set to
0 when not defined. Generically these equations can
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be solved recursively forfs(n) and es(), respec-
tively (the initial dataf;(0) ande,(0) being presumed
known). Exceptions occur whend +s —1=0 (i.e.,
s =d + 1); then(31) becomes a tautology ard2),

dfa+1 _ ed—1
ow 2

takes its place as the equation determinjpgs .

Thus there is no equation to determiag.1(u).
The reason is that there is no way in this approach to
impose the second boundary condit{d3), so the so-
lution must involve an arbitrary function. Ironically,
that function turns out to be naturally identified with
the renormalized vacuum enerd§), precisely the
quantity of greatest physical interest. In fact, the only
coefficients that have been completely determined by
this exercise are the ones that are equivalent to heat-
kernel coefficient§6—8]. Nevertheless, the calculation
clarifies the structure of the problem and shows that
onceeg+1(1) is known (along with the mass-zero co-
efficients), all the higher cylinder-kernel coefficients
are computable.

(33)
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