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Abstract

The regularized vacuum energy (or energy density) of a quantum field subjected to static external conditions is s
satisfy a certain partial differential equation with respect to two variables, the mass and the “time” (ultraviolet cutoff para
The equation is solved to provide integral expressions for the regularized energy (more precisely, the cylinder kernel) a
mass in terms of that for zero mass. Alternatively, for fixed positive mass all coefficients in the short-time asymptotic
regularized energy can be obtained recursively from the first nontrivial coefficient, which is the renormalized vacuum e
 2005 Elsevier B.V.Open access under CC BY license.
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1. Background

The experimentally documented physical releva
of vacuum energy involves the electromagnetic fi
(the Casimir effect). Other theoretical work also us
ally considers massless fields (scalar fields for ca
lational and conceptual simplicity; neutrinos or gluo
for more exotic or speculative applications). Nev
theless, the vacuum energy of a quantum field w
mass is of theoretical importance. Adding the m
term is the simplest generalization of the basic mo
of a massless scalar field in an empty flat cav
a step toward the more complicated scenarios w
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space-dependent external potentials or curved b
ground geometries. Although massive Casimir-ty
effects in the simplest geometries tend to be expon
tially damped relative to their massless counterpa
they can be less negligible in other geometries[1, Sec-
tions 7.4–7.5].

The massive field in one-dimensional space w
studied by Hays[2]. (See also[3–5].) Perhaps the mos
notable feature of the results is the presence of a
arithmic divergence, absent from the massless c
Although physically harmless in the context of t
one-dimensional bag model[2,3], a logarithmic diver-
gence is regarded as particularly problematic by so
theorists because it is not automatically eliminated
dimensional or zeta-function regularization.

As I have stressed elsewhere[6–8], vacuum energy
is one of a series of moments of the spectral distri
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tion of the differential operator appearing in the fie
equation; these quantities arise as the coefficient
the short-time asymptotics of a certain Green functi
the “cylinder kernel”. The diagonal value of the latt
is, up to a differentiation and a numerical factor, t
regularized vacuum energy defined by an ultravio
cutoff (with the time variable as the cutoff paramet
[2,3,9]. Thus the vacuum energy (regardless of exp
mental relevance) is of mathematical interest as a
of spectral analysis. The cylinder-kernel coefficie
incorporate nonlocal geometrical information that
not extractable from the much-studied short-time
ymptotic expansion of the heat kernel. (The cylind
kernel is minus twice thet-derivative of the Green
function employed in[2,3].)

2. Notation

Consider a field equation of the type∂
2φ

∂t2 = −Hφ,
where

(1)H = H0 + µ, µ ≡ m2,

andH0 is a self-adjoint second-order differential ope
ator in the spatial variables, such as−∇2. For simplic-
ity (although the treatment of local energy density
actually more general) assume that the spatial dom
is compact andH has a discrete, positive spectru
{ω2

n} with orthonormal eigenfunctions{φn(x)}.
For auxiliary mathematical purposes one stud

theheat kernel

(2)

K(t, x, y) = 〈x|e−tH |y〉 =
∞∑

n=1

e−tω2
nφn(x)φn(y)∗

and thecylinder (Poisson) kernel

(3)

T (t, x, y) = 〈x|e−t
√

H |y〉 =
∞∑

n=1

e−tωnφn(x)φn(y)∗.

Each of these can be “traced” over space; for exam

(4)TrT =
∫

〈x|e−t
√

H |x〉dx =
∞∑

n=1

e−tωn .
Formally, the vacuum energy of the quantized fi
configuration is

(5)E = 1

2

∞∑
n=1

ωn = −1

2
lim
t→0

∂

∂t
TrT ,

and one possible definition (see[7,8]) of the vacuum
energy density is

T00(x) = 1

2

∞∑
n=1

ωnφn(x)φn(y)∗

(6)= −1

2
lim
t→0

∂

∂t
T (t, x, x).

In reality, the limits in(5) and(6) do not exist, but
TrT andT (t, x, x) possess asymptotic expansions
t ↓ 0 of the form[6,9–11]

(7)T ∼
∞∑

s=0

est
−d+s +

∞∑
s=d+1
s−d odd

fst
−d+s ln t,

where the coefficients of the divergent terms are s
ple, local objects that can be absorbed by renorm
ization. (Hered is the spatial dimension.) Therefor
one regards(3) and(4), after operation by−1

2
∂
∂t

, as
theregularized energy and energy density, and one
gards−1

2 times the coefficient of the term of ordert

in (3) and(4) as therenormalized energy and energ
density:

(8)E or T00 = −1

2
ed+1.

Similarly, if K stands for either TrK or K(t, x, x),
it has an expansion of the form

(9)K ∼
∞∑

s=0

bst
(−d+s)/2.

3. The main equation

The coefficients in(7) and(9) are functions ofµ.
Let us writeT (µ, t) andK(µ, t) for the quantities be
ing expanded and writees(µ), etc., for the coefficients
In the case of the heat kernel, it is elementary that

(10)K(µ, t) = K(0, t)e−µt ,
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and from (10) it is routine to find formulas for the
bs(µ) in terms ofbs′(0) (s′ � s). For the cylinder ker-
nel it is clear that no elementary factorization like(10)
occurs, and hence the mass dependence is much
interesting and nontrivial.

On the other hand,(10) is equivalent to the differ
ential equation

(11)
∂K

∂µ
= −tK.

The goal of the present Letter is to find, as nea
as possible, an analogue of(11) for the quantities
T (µ, t) related to vacuum energy. Sinceωn(µ) =√

ωn(0)2 + µ, it is easy to show from(4) or (3) that

(12)
∂2

∂µ∂t

(
T

t

)
= T

2
,

which is the central equation of this Letter. The va
ablest andµ naturally range from 0 to+∞.

If its right side were zero,(12) would be math-
ematically equivalent to the massless wave equa
in two-dimensional space–time written in null (lig
cone) coordinates; as is well known, its general so
tion would then beT (µ, t)/t = A(t)+B(µ), whereA
andB are arbitrary functions. The full equation(12) is
of the same hyperbolic type, and one can again
pect the general solution to involve two arbitrary on
variable functions. One of these should be the “ini
value” T (0, t), in analogy with(10). The remaining
boundary condition is (cf.(3)–(4))

(13)lim
t→+∞T (µ, t) = 0.

4. Solution by Laplace transform

Let F(s, t) be the Laplace transform ofT (µ, t)/t

with respect toµ. Then(12) is equivalent to

s
dF

dt
− ∂

∂t

T (0, t)

t
= t

2
F ;

i.e.,

(14)
dF

dt
− t

2s
F = ∂

∂t

T (0, t)

st
.

The solution of(14)consistent with(13) is

(15)F(s, t) = −et2/4s

∞∫
e−v2/4s ∂

∂v

T (0, v)

sv
dv.
t

e

Equivalently,

(16)

F(s, t) = T (0, t)

st
− 1

2s2
et2/4s

∞∫
t

e−v2/4sT (0, v) dv.

Thus, in principle,T (µ, t) can be calculated from
T (0, v).

Indeed, the inverse Laplace transform can be
formed at the kernel level (under the integral sign
(15)or (16)) [12, p. 1026]:

(17)

T (µ, t)

t
= −

∞∫
t

J0
(
m

√
v2 − t2

) ∂

∂v

(
T (0, v)

v

)
dv

or

T (µ, t) = T (0, t)

(18)

− t

∞∫
t

mdv√
v2 − t2

J1
(
m

√
v2 − t2

)
T (0, v).

A change of variable (w2 = v2 − t2) converts(18) to

T (µ, t) = T (0, t)

(19)

−t

∞∫
0

mdw√
w2 + t2

J1(mw)T
(
0,

√
w2 + t2

)
,

and there is a similar variant of(17).

4.1. Example 1

The cylinder kernel of the free massless scalar fi
in spatial dimensiond is

(20)T (0, t,x,y) = �(c)π−ct

(t2 + z2)c
,

wherez ≡ |x − y| is the spatial separation andc =
1
2(d + 1). According to(17), therefore,

(21)

T (µ, t,x,y) = 2c�(c)π−ct

∞∫
0

wJ0(mw)dw

(w2 + t2 + z2)c+1
.

From[14, p. 425]follows

(22)

T
(
m2, t,x,y

) = 21−cπ−cmct
(
t2 + z2)−c/2

× Kc

(
m

√
t2 + z2

)
,
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which is the correct formula1 for the cylinder kerne
of the free field of massm. All the solution formulas
for problems with infinite flat boundaries now follo
by the method of images.

4.2. Example 2

Let d = 1 and consider an interval of lengthL with
Dirichlet boundary conditions. For the massless c
the solution by images can be summed in closed f
[6, (23) and (27)]with the result

(23)TrT (0, t) = 1

2

sinh(πt/L)

cosh(πt/L) − 1
− 1

2
.

We apply(19) and(5) and compare with the conclu
sions of Hays[2] about the renormalized total ener
in the massive case (finding complete agreement).
convenient to separate out the contribution of the f
Green function(20) (with c = 1, z = 0, and integrated
over 0< x < L), because that is where all the dive
gences lie. That is, in both places in(19)write

T (0, v) = L

πv
+

[
T (0, v) − L

πv

]
.

When we apply the operator−1
2 limt→0

∂
∂t

to (19) we
thus encounter four terms:

• The divergent term

(24)
L

2πt2

(present already in empty space) is the ma
independent part of the renormalization of the b
constant in[2, (3.10)].

• The remaining (bracket) contribution of the fir
term in (19) is the familiar massless Casimir e
ergy,

(25)− π

24L
.

(It comes from theO(t2) term in the Taylor ex-
pansion of(23). Regrettably, that crucial term
written in [6, (27)] with the wrong sign.)

1 The Bender–Hays Green function[2,3] is the Green function o

the Helmholtz equation in one higher dimension,[−∇2 − ∂2

∂t2
+

m2]G = δ(t)δd (z). In the free case this kernel is known[15, (4.25)]
and is proportional toKc−1(m

√
t2 + z2). Differentiation and a re-

cursion relation for the modified Bessel function then lead to(22).
• The contribution of the free Green function to t
integral in(19)works out to

m2Lt

2π
ln

(
mt

2

)
+ (2C − 1)

m2Lt

4π

(C = 0.577. . . , Euler’s constant). The corre
sponding term in the regularized energy,

(26)−m2L

4π
ln

(
mt

2

)
− (2C + 1)

m2L

8π
,

is the mass-dependent part of the renormaliza
[2, (3.10)]. It, also, is present in empty space.
includes a finite term, proportional tom2L, which
is actually ambiguous in the sense that the sc
factor in the argument of the logarithm function
arbitrary.)

• The remaining (bracket) part of the integral sp
into two disparate pieces.
– The term−1

2 in (23)contributes2

(27)−1

4
lim
t→0

∂

∂t

(
1− e−mt

) = −m

4

to the energy, in agreement with[2, (3.15)].
This constant term, associated with paths t
reflect from the boundaries an odd number
times [2, Section 4], represents the energy
interaction of the massive field with the tw
boundaries separately (i.e., it survives whenL

approaches infinity, and it does not contribu
to the Casimir force).

– What remains is the contribution of the pat
that reflect an even number of times; it is t
mass-dependent part of the true Casimir ene
In our present approach it equals3

m

4

∞∫
0

J1(mw)

w

[
sinh(πw/L)

cosh(πw/L) − 1
− 2L

πw

]
dw

(28)

= m

4

∞∫
0

J1

(
mLu

π

)[
coth

(
u

2

)
− 2

u

]
du

u
.

2 This follows from [13, (6.552.1)]and the power series of th
Bessel functions.

3 The error made by settingt = 0 inside the integrand of this term

of (19) before differentiating is of ordert2 ln t , so it vanishes in the
limit.
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In Hays’s approach[2, (3.11) and (3.13)]it ap-
pears as

(29)− m

2π

∞∑
s=1

K1(2mLs)

s
+ π

24L

(since Hays’s sum includes the massless C
mir energy,(25)). The equivalence of(28) and
(29) is not obvious, but it can be verified by th
method of[14, p. 427]. (It has also been teste
numerically.) We claim no practical advanta
for the integral, since the sum converges fas

5. Partial solution by recursion

Rarely will one of the integrals(15)–(19)be evalu-
able analytically in any particular case. Moreov
T (0, t) often will not be available for arbitrarily
larget . It is worthwhile, therefore, to see how much i
formation can be obtained from the known asympto
structure(7) if the coefficients form = 0 are known.

By substituting(7) into (12)one obtains

∞∑
s=0

(−d + s − 1)
∂es

∂µ
t−d+s−2

+
∞∑

s=d+1
s−d odd

(−d + s − 1)
∂fs

∂µ
t−d+s−2 ln t

+
∞∑

s=d+1
s−d odd

∂fs

∂µ
t−d+s−2

(30)

=
∞∑

s=2

es−2

2
t−d+s−2 +

∞∑
s=d+3
s−d odd

fs−2

2
t−d+s−2 ln t.

Therefore, we have the recursion relations

(31)(−d + s − 1)
∂fs

∂µ
= fs−2

2

for s − d odd and positive, and

(32)(−d + s − 1)
∂es

∂µ
= es−2

2
− ∂fs

∂µ

for all nonnegative integerss, the terms being set t
0 when not defined. Generically these equations
be solved recursively forfs(µ) and es(µ), respec-
tively (the initial datafs(0) andes(0) being presumed
known). Exceptions occur when−d + s − 1 = 0 (i.e.,
s = d + 1); then(31)becomes a tautology and(32),

(33)
∂fd+1

∂µ
= ed−1

2
,

takes its place as the equation determiningfd+1.
Thus there is no equation to determineed+1(µ).

The reason is that there is no way in this approac
impose the second boundary condition(13), so the so-
lution must involve an arbitrary function. Ironicall
that function turns out to be naturally identified wi
the renormalized vacuum energy(8), precisely the
quantity of greatest physical interest. In fact, the o
coefficients that have been completely determined
this exercise are the ones that are equivalent to h
kernel coefficients[6–8]. Nevertheless, the calculatio
clarifies the structure of the problem and shows t
onceed+1(µ) is known (along with the mass-zero c
efficients), all the higher cylinder-kernel coefficien
are computable.
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