434 research outputs found

    Higher Order Nyquist Zone Sampling with RFSoC Data Converters for Astronomical and High Energy Physics Readout Systems

    Full text link
    From generation to generation, the maximum RF frequency and sampling rate of the integrated data converters in RF system-on-chip (RFSoC) family devices from Xilinx increases significantly. With the integrated digital mixers and up and down conversion blocks in the datapaths of the data converters, those RFSoC devices offer the capability for implementing a full readout system of ground and space-based telescopes and detectors across the electromagnetic spectrum within the devices with minimum or no analog mixing circuit. In this paper, we present the characterization results for the the data converters sampling at higher orders of Nyquist zones to extend the frequency range covered for our targeted readout systems of microwave-frequency resonator-based cryogenic detector and multiplexer systems and other astronomical and high-energy physics instrumentation applications, such as, axion search and dark matter detection. The initial evaluation of the data converters operating higher order Nyquist zones covers two-tones and comb of tones tests to address the concerns in the RF inter-modulation distortion, which is the key performance index for our targeted applications. The characterization of the data converters is performed in the bandwidth of 4-6 GHz and results meet our requirements. The settings and operating strategies of the data converters for our targeted applications will be summarised

    Molecular cloud abundances and anomalous diffusion

    Full text link
    The chemistry of molecular clouds has been studied for decades, with an increasingly general and sophisticated treatment of the reactions involved. Yet the treatment of turbulent diffusion has remained extremely sketchy, assuming simple Fickian diffusion with a scalar diffusivity D. However, turbulent flows similar to those in the interstellar medium are known to give rise to anomalous diffusion phenomena, more specifically superdiffusion (increase of the diffusivity with the spatial scales involved). This paper considers to what extent and in what sense superdiffusion modifies molecular abundances in interstellar clouds. For this first exploration of the subject we employ a very rough treatment of the chemistry and the effect of non-unifom cloud density on the diffusion equation is also treated in a simplified way. The results nevertheless clearly demonstrate that the effect of superdiffusion is quite significant, abundance values at a given radius being modified by order of unity factors. The sense and character of this influence is highly nontrivial.Comment: 4 pages, 8 figure

    CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    Get PDF
    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3") maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with CARMA. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code RADEX (Van der Tak et al. 2007). We find the east/west chemical differentiation in C2 may be explained by the contrast of the shock's interaction with either cold, pristine material or warm, previously-shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.Comment: Accepted for publication in the Astrophysical Journa

    The First Mid-infrared Detection of HNC in the Interstellar Medium: Probing the Extreme Environment toward the Orion Hot Core

    Get PDF
    We present the first mid-infrared (MIR) detections of HNC and H13CN in the interstellar medium, and numerous, resolved HCN rovibrational transitions. Our observations span 12.8 to 22.9 micron towards the hot core Orion IRc2, obtained with the Echelon-Cross-Echelle Spectrograph aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Exceptional, ~5 km/s, resolution distinguishes individual rovibrational transitions of the HNC and HCN P, Q, and R branches; and the H13CN R branch. This allows direct measurement of the species' excitation temperatures, column densities, and relative abundances. HNC and H13CN exhibit a local standard rest velocity of -7 km/s that may be associated with an outflow from nearby radio source I and an excitation temperature of about 100 K. We resolve two velocity components for HCN, the primary component also being at -7 km/s with temperature 165 K. The hottest component, which had never before been observed, is at 1 km/s with temperature 309 K. This is the closest component to the hot core's centre measured to date. The derived 12C/13C=13 is below expectation for Orion's Galactocentric distance, but the derived HCN/HNC=72 is expected for this extreme environment. Compared to previous sub-mm and mm observations, our SOFIA line survey of this region shows that the resolved MIR molecular transitions are probing a distinct physical component and isolating the chemistry closest to the hot core

    Detection of Interstellar HC4_4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions

    Full text link
    We report an astronomical detection of HC4_4NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of 10.5σ10.5 \sigma. The total column density and excitation temperature of HC4_4NC are determined to be 3.291.20+8.60×10113.29^{+8.60}_{-1.20}\times 10^{11} cm2^{-2} and 6.70.3+0.36.7^{+0.3}_{-0.3} K, respectively, using the MCMC analysis. In addition to HC4_4NC, HCCNC is distinctly detected whereas no clear detection of HC6_6NC is made. We propose that the dissociative recombination of the protonated cyanopolyyne, HC5_5NH+^+, and the protonated isocyanopolyyne, HC4_4NCH+^+, are the main formation mechanisms for HC4_4NC while its destruction is dominated by reactions with simple ions and atomic carbon. With the proposed chemical networks, the observed abundances of HC4_4NC and HCCNC are reproduced satisfactorily.Comment: Accepted in the Astrophysical Journal Letter
    corecore