115 research outputs found
Recommended from our members
Assessment of erosion and surface tritium inventory issues for the ITER divertor
The authors analyzed sputtering erosion and tritium codeposition for the ITER vertical target divertor design using erosion and plasma codes (WBC/REDEP/DEGAS+) coupled to available materials data. Computations were made for a beryllium, carbon, and tungsten coated divertor plate, and for three edged plasma regimes. New data on tritium codeposition in beryllium was obtained with the TPE facility. This shows codeposited H/Be ratios of the order of 10% for surface temperatures {le} 300 C, beryllium thereby being similar to carbon in this respect. Hydrocarbon transport calculations show significant loss (10--20%) of chemically sputtered carbon for detached conditions (T{sub e} {approx} 1 eV at the divertor), compared to essentially no loss (100% redeposition) for higher temperature plasmas. Calculations also show a high, non-thermal, D-T molecular flux for detached conditions. Tritium codeposition rates for carbon are very high for detached conditions ({approximately} 20g-T/1000 s discharge), due to buildup of chemically sputtered carbon on relatively cold surfaces of the divertor cassette. Codeposition is lower ({approximately} 10X) for higher edge temperatures ({approximately} 8--30 eV) and is primarily due to divertor plate buildup of physically sputtered carbon. Peak net erosion rates for carbon are of order 30 cm/burn-yr. Erosion and codeposition rates for beryllium are much lower than for carbon at detached conditions, but are similar to carbon for the higher temperatures. Both erosion and tritium codeposition are essentially nil for tungsten for the regimes studied
Recommended from our members
Erosion/redeposition analysis of lithium-based liquid surface divertors.
Unraveling the deposition mechanism in a-C:H thin-film growth : a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces
In this mol.-dynamics study, we present the simulated growth of thin a-C:H films using the Brenner [Phys. Rev. B 42, 9458 (1990)] potential. These simulations are relevant for the growth of thin films, grown using low-energy hydrocarbons. In this work, we investigate the reaction mechanisms of both the linear and the cyclic isomers of C3 and C3H on an a-C:H surface. We found that the cyclic species are always more reactive as compared to the linear species, due to their lower stability. The C3 species are found to be more reactive than the C3H species, due to steric hindrance of the H atom, shielding the C atom from the surface. The different mechanisms are discussed. The resulting film properties for different flux ratios of C3 and C3H have also been investigated. It is shown that films as deposited from C3 and C3H have a low d. and show low crosslinking. A clear change in microstructure is obsd. as the ratio between the cyclic and the linear species changes. These simulations provide insights into the reaction behavior of the investigated species, and how this influences the resulting film properties. [on SciFinder (R)
Error mitigation, optimization, and extrapolation on a trapped ion testbed
Current noisy intermediate-scale quantum (NISQ) trapped-ion devices are
subject to errors around 1% per gate for two-qubit gates. These errors
significantly impact the accuracy of calculations if left unchecked. A form of
error mitigation called Richardson extrapolation can reduce these errors
without incurring a qubit overhead. We demonstrate and optimize this method on
the Quantum Scientific Computing Open User Testbed (QSCOUT) trapped-ion device
to solve an electronic structure problem. We explore different methods for
integrating this error mitigation technique into the Variational Quantum
Eigensolver (VQE) optimization algorithm for calculating the ground state of
the HeH+ molecule at 0.8 Angstrom. We test two methods of scaling noise for
extrapolation: time-stretching the two-qubit gates and inserting two-qubit gate
identity operations into the ansatz circuit. We find the former fails to scale
the noise on our particular hardware. Scaling our noise with global gate
identity insertions and extrapolating only after a variational optimization
routine, we achieve an absolute relative error of 0.363% +- 1.06 compared to
the true ground state energy of HeH+. This corresponds to an absolute error of
0.01 +- 0.02 Hartree; outside chemical accuracy, but greatly improved over our
non error mitigated estimate. We ultimately find that the efficacy of this
error mitigation technique depends on choosing the right implementation for a
given device architecture and sampling budget.Comment: 16 pages, 11 figure
Siderite micro-modification for enhanced corrosion protection
Production of oil and gas results in the creation of carbon dioxide (CO₂) which when wet is extremely corrosive owing to the speciation of carbonic acid. Severe production losses and safety incidents occur when carbon steel (CS) is used as a pipeline material if corrosion is not properly managed. Currently corrosion inhibitor (CI) chemicals are used to ensure that the material degradation rates are properly controlled; this imposes operational constraints, costs of deployment and environmental issues. In specific conditions, a naturally growing corrosion product known as siderite or iron carbonate (FeCO₃) precipitates onto the internal pipe wall providing protection from electrochemical degradation. Many parameters influence the thermodynamics of FeCO₃ precipitation which is generally favoured at high values of temperatures, pressure and pH. In this paper, a new approach for corrosion management is presented; micro-modifying the corrosion product. This novel mitigation approach relies on enhancing the crystallisation of FeCO₃ and improving its density, protectiveness and mechanical properties. The addition of a silicon-rich nanofiller is shown to augment the growth of FeCO₃ at lower pH and temperature without affecting the bulk pH. The hybrid FeCO₃ exhibits superior general and localised corrosion properties. The findings herein indicate that it is possible to locally alter the environment in the vicinity of the corroding steel in order to grow a dense and therefore protective FeCO₃ film via the incorporation of hybrid organic-inorganic silsesquioxane moieties. The durability and mechanical integrity of the film is also significantly improved
Cognitive Control in Adolescence: Neural Underpinnings and Relation to Self-Report Behaviors
Adolescence is commonly characterized by impulsivity, poor decision-making, and lack of foresight. However, the developmental neural underpinnings of these characteristics are not well established.To test the hypothesis that these adolescent behaviors are linked to under-developed proactive control mechanisms, the present study employed a hybrid block/event-related functional Magnetic Resonance Imaging (fMRI) Stroop paradigm combined with self-report questionnaires in a large sample of adolescents and adults, ranging in age from 14 to 25. Compared to adults, adolescents under-activated a set of brain regions implicated in proactive top-down control across task blocks comprised of difficult and easy trials. Moreover, the magnitude of lateral prefrontal activity in adolescents predicted self-report measures of impulse control, foresight, and resistance to peer pressure. Consistent with reactive compensatory mechanisms to reduced proactive control, older adolescents exhibited elevated transient activity in regions implicated in response-related interference resolution.Collectively, these results suggest that maturation of cognitive control may be partly mediated by earlier development of neural systems supporting reactive control and delayed development of systems supporting proactive control. Importantly, the development of these mechanisms is associated with cognitive control in real-life behaviors
Large-scale unit commitment under uncertainty: an updated literature survey
The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
- …