2,001 research outputs found

    Comparison and the Justification of Choice

    Get PDF

    Grounding practical normativity: going hybrid

    Get PDF

    Structure- and context-based analysis of the GxGYxYP family reveals a new putative class of glycoside hydrolase.

    Get PDF
    BackgroundGut microbiome metagenomics has revealed many protein families and domains found largely or exclusively in that environment. Proteins containing the GxGYxYP domain are over-represented in the gut microbiota, and are found in Polysaccharide Utilization Loci in the gut symbiont Bacteroides thetaiotaomicron, suggesting their involvement in polysaccharide metabolism, but little else is known of the function of this domain.ResultsGenomic context and domain architecture analyses support a role for the GxGYxYP domain in carbohydrate metabolism. Sparse occurrences in eukaryotes are the result of lateral gene transfer. The structure of the GxGYxYP domain-containing protein encoded by the BT2193 locus reveals two structural domains, the first composed of three divergent repeats with no recognisable homology to previously solved structures, the second a more familiar seven-stranded β/α barrel. Structure-based analyses including conservation mapping localise a presumed functional site to a cleft between the two domains of BT2193. Matching to a catalytic site template from a GH9 cellulase and other analyses point to a putative catalytic triad composed of Glu272, Asp331 and Asp333.ConclusionsWe suggest that GxGYxYP-containing proteins constitute a novel glycoside hydrolase family of as yet unknown specificity

    Reptile scale paradigm: Evo-Devo, pattern formation and regeneration

    Get PDF
    The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments

    Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase.

    Get PDF
    BackgroundBacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism.ResultsBT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications.ConclusionsStructural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively

    Voluntarist reasons and the sources of normativity

    Get PDF

    Transformative Choices

    Get PDF
    This paper proposes a way to understand transformative choices, choices that change ‘who you are.’ First, it distinguishes two broad models of transformative choice: 1) ‘event-based’ transformative choices in which some event—perhaps an experience—downstream from a choice transforms you, and 2) ‘choice-based’ transformative choices in which the choice itself—and not something downstream from the choice—transforms you. Transformative choices are of interest primarily because they purport to pose a challenge to standard approaches to rational choice. An examination of the event-based transformative choices of L. A. Paul and Edna Ullman-Margalit, however, suggests that event-based transformative choices don’t raise any difficulties for standard approaches to rational choice. An account of choice-based transformative choices—and what it is to be transformed—is then proposed. Transformative choices so understood not only capture paradigmatic cases of transformative choice but also point the way to a different way of thinking about rational choice and agency. </p

    Two Conceptions of Reasons for Action

    Get PDF
    On a ‘comparative’ conception of practical reasons, reasons are like ‘weights’ that can make an action more or less rational. Bernard Gert adopts instead a ‘toggle’ conception of practical reasons: something counts as a reason just in case it alone can make some or other otherwise irrational action rational. I suggest that Gert’s conception suffers from various defects, and that his motivation for adopting this conception – his central claim that actions can be rational without there being reasons for them – does not require adoption of the toggle conception. The more intuitive comparative conception of reasons for action can accommodate the insight
    • …
    corecore