46,441 research outputs found
Systematically disseminating technological information to potential users
Rapid technological information dissemination system related to the field of remote sensing is presented. The technology transfer staff systematically designed instructional materials and activities using the matrix as an organizer to meet the need of the students, scientists and users in a rapidly expanding technology
Disseminating technological information on remote sensing to potential users
The Laboratory for Applications of Remote Sensing developed materials and programs which range from short tutorial brochures to post-doctoral research programs which may span several years. To organize both the content and the instructional techniques, a matrix of instructional materials was conceptualized. Each row in the matrix represents a subject area in remote sensing and each column in the matrix represents a different type media or instructional strategy
Multivariable control theory applied to hierarchial attitude control for planetary spacecraft
Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included
Volatile hydrocarbons inhibit methanogenic crude oil degradation
Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5-nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12-nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12-nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers
A Mathematical Model for Estimating Biological Damage Caused by Radiation
We propose a mathematical model for estimating biological damage caused by
low-dose irradiation. We understand that the Linear Non Threshold (LNT)
hypothesis is realized only in the case of no recovery effects. In order to
treat the realistic living objects, our model takes into account various types
of recovery as well as proliferation mechanism, which may change the resultant
damage, especially for the case of lower dose rate irradiation. It turns out
that the lower the radiation dose rate, the safer the irradiated system of
living object (which is called symbolically "tissue" hereafter) can have
chances to survive, which can reproduce the so-called dose and dose-rate
effectiveness factor (DDREF).Comment: 22 pages, 6 Figs, accepted in Journal of the Physical Society of
Japa
p-Wave stabilization of three-dimensional Bose-Fermi solitons
We explore bright soliton solutions of ultracold Bose-Fermi gases, showing
that the presence of p-wave interactions can remove the usual collapse
instability and support stable soliton solutions that are global energy minima.
A variational model that incorporates the relevant s- and p-wave interactions
in the system is established analytically and solved numerically to probe the
dependencies of the solitons on key experimental parameters. Under attractive
s-wave interactions, bright solitons exist only as meta-stable states
susceptible to collapse. Remarkably, the presence of repulsive p-wave
interactions alleviates this collapse instability. This dramatically widens the
range of experimentally-achievable soliton solutions and indicates greatly
enhanced robustness. While we focus specifically on the boson-fermion pairing
of 87Rb and 40K, the stabilization inferred by repulsive p-wave interactions
should apply to the wider remit of ultracold Bose-Fermi mixtures.Comment: 9 pages, 6 figure
Stuffed MO layer as a diffusion barrier in metallizations for high temperature electronics
Auger electron spectroscopy was employed to characterize the diffusion barrier properties of molybdenum in the CrSi2/Mo/Au metallization system. The barrier action of Mo was demonstrated to persist even after 2000 hours annealing time at 300 C in a nitrogen ambient. At 340 C annealing temperature, however, rapid interdiffusion was observed to have occurred between the various metal layers after only 261 hours. The presence of controlled amounts of oxygen in the Mo layer is believed to be responsible for suppressing the short circuit interdiffusion between the thin film layers. Above 340 C, its is believed that the increase in the oxygen mobility led to deterioration of its stuffing action, resulting in the rapid interdiffusion of the thin film layers along grain boundaries
- …