30 research outputs found

    Elastic buckling of elliptical tubes

    Get PDF

    Tradition and innovation in teaching structural design in civil engineering

    Get PDF

    Serviceability response of a bench-mark cable-stayed footbridge: comparison of available methods

    Get PDF
    In previous Footbridge Conferences, the focus of researchers has been on the representation of pedestrian actions (vertical and lateral) to design footbridges, on the proposal of methodologies for the analysis in service of these structures and on the description of the serviceability response of particular footbridges. Nonetheless, none of these research works have been focused on the magnitude of the serviceability response of footbridges according to its structural type. This paper characterises the response of footbridges with stayed cables as main structural type. Based on a compiled dataset of cable-stayed footbridges (developed for this research work), the paper presents the geometrical and structural characteristics of a footbridge that can be regarded as representative of this structural type. Considering the best methodologies available for the assessment of its response in vertical and lateral direction, the paper describes the magnitude of the serviceability performance of this bridge under a wide range of pedestrian scenarios. This description familiarises designers at early stages of their design with the order of magnitude of the serviceability response of cable-stayed footbridges with an arrangement similar to that commonly used for this structural type

    Serviceability limit state of vibrations in under-deck cable-stayed bridges accounting for vehicle-structure interaction

    Get PDF
    Verification of the serviceability limit state of vibrations due to traffic live loads can be neglected in conventional types of concrete road bridges but becomes critical in the design of slender structures like under-deck cable-stayed bridges. The novelty of the work presented in this article is that an innovative vehicle-bridge interaction model is employed, in which realistic wheel dimensions of heavy trucks, road roughness profiles and the cross slope of the road are considered in nonlinear dynamic analyses of detailed three-dimensional finite element models. An extensive parametric study is conducted to explore the influence of the bridge parameters such as the longitudinal and transverse cable arrangement and the support conditions, in addition to the load modelling, road quality, the wheel size, the transverse road slope and the vehicle position and speed on the response of under-deck cable-stayed bridges. It has been observed that the vibrations perceived by pedestrians can be effectively reduced by concentrating the cable-system below the deck at the bridge centreline. The Fourier amplitude spectrum of the acceleration at critical positions along the deck proved that the response of under-deck cable-stayed bridges is not dominated only by contributions at the fundamental mode and, consequently, the conventional deflection-based methods are not valid to assess the users comfort. Instead, Vehicle-Bridge Interaction analyses are recommended for detailed design, considering the wheel dimensions if the pavement quality is bad and/or if the wheel radius is large. Finally, we verify through multiple approaches that the comfort of pedestrian users is more critical than that of vehicle users. However, the comfort of vehicle users is shown to be significantly affected when the road quality is poor

    Developments in under-deck and combined cable-stayed bridges

    No full text
    Under-deck, cable-stayed bridges and combined cablestayed bridges constitute two innovative bridge types that have been designed and built on relatively few occasions over the last 30 years, in most cases by renowned structural engineers, such as Leonhardt, Schlaich, Virlogeux, Manterola, Robertson and Cremer. In these bridge types, the stay cables have unconventional layouts: either below the deck, in the case of under-deck cablestayed bridges, or above and below the deck, in the case of combined cable-stayed bridges. In this paper, a general and critical overview of the current state-of-the-art is outlined, addressing issues related to proposals, built bridges and research. Significant attention is paid to their highly efficient structural behaviour and unconventional design criteria, both of which lead to a significant reduction in the amount of required materials, in comparison with conventional bridges without stay cables, and thus allow for sustainable design. Other advantages of these bridges, such as multiple construction possibilities, strong aesthetic characteristics and their broad range of potential applications, are also stressed

    Experimental assessment and constitutive modelling of rubberised concrete materials

    Get PDF
    This paper focuses on examining the uniaxial behaviour of concrete materials incorporating rubber particles, obtained from recycled end-of-life tyres, as a replacement for mineral aggregates. A detailed account of a set of material tests on rubberised concrete cylindrical samples, in which fine and coarse mineral aggregates are replaced in equal volumes by rubber particles with various sizes, is presented. The experimental results carried out in this investigation, combined with detailed examination of data available from previous tests on rubberised concrete materials, show that the rubber particles influence the mechanical properties as a function of the quantity and type of the mineral aggregates replaced. Experimental evaluation of the complete stress-strain response depicts reductions in compressive strength, elastic modulus, and crushing strain, with the change in rubber content. Enhancement is also observed in the energy released during crushing as well as in the lateral strain at crushing, primarily due to the intrinsic deformability of the interfacial clamping of rubber particles which leads to higher lateral dilation of the material. The test results and observations enable the definition of a series of expressions to estimate the mechanical properties of rubberised concrete materials. An analytical model is also proposed for the detailed assessment of the complete stress-strain response as a function of the volumetric rubber ratio. Validations performed against the material tests carried out in this study, as well as those from previous investigations on rubberised concrete materials, show that the proposed models offer reliable predictions of the mechanical properties including the full axial and lateral stress-strain response of concrete materials incorporating rubber particles
    corecore