
Cite this paper as: Ruiz-Teran AM, Aparicio AC, 2009, Response of under-deck cable-stayed bridges 
to the accidental breakage of stay cables, Engineering Structures, Vol:31, ISSN:0141-0296, 
Pages:1425-1434 [DOI: 10.1016/j.engstruct.2009.02.027] 
 

- 1 - 

Response of under-deck cable-stayed bridges to the accidental 

breakage of stay cables.  

A. M. Ruiz-Teran
a,1

, A. C. Aparicio
b 

 

 

a 
Principal Lecturer in Structural Engineering. School of Computing, Information Technology and 

Engineering, University of East London, 4-6 University Way, E16 2RD London, UK.  

 

b
 Professor in Bridge Engineering. Department of Construction Engineering, Technical University of 

Catalonia, C/Jordi Girona, 1-3, 08034 Barcelona, Spain 

                                                      

1 Corresponding address: Tel: +44 208 223 3289 Fax: +44 208 223 2963  

E-mail address: a.m.ruiz-teran@uel.ac.uk; aruiter@ciccp.es (A. M. Ruiz-Teran), angel.carlos.aparicio@upc.es 

(A. C. Aparicio) 

mailto:a.m.ruiz-teran@uel.ac.uk


Cite this paper as: Ruiz-Teran AM, Aparicio AC, 2009, Response of under-deck cable-stayed bridges 
to the accidental breakage of stay cables, Engineering Structures, Vol:31, ISSN:0141-0296, 
Pages:1425-1434 [DOI: 10.1016/j.engstruct.2009.02.027] 
 

- 2 - 

ABSTRACT 

Under-deck cable-stayed bridges with prestressed concrete decks have recently been shown to 

be appropriate structural types for highway overpasses. However, doubts have emerged regarding their 

capability to withstand the accidental breakage of stay cables, due to collisions with heavy vehicles, 

without collapsing. In this paper, two distinct parametric analyses are conducted on two different 

bridges, each of which is representative of this bridge type, in order to study their response due to the 

breakage of stay cables. The response is assessed through fully dynamic analyses, rather than pseudo-

dynamic analysis (via the use of dynamic amplification factors), since the latter method has been 

shown to be un-conservative in some cases. In both parametric analyses different scenarios, i.e., 

different parameters, relating to the type of breakage, the time over which breakage occurs, the 

number of broken stay cables, the type of deviators and the amount of applied traffic live load are 

considered. In the present study, the capability of this bridge type to easily overcome this accidental 

action, with a higher degree of safety than that required by codes, is clearly demonstrated. In fact, the 

analysed bridges do not reach any ultimate limit-state even if 40% of their stay cables are suddenly 

broken when 100% of the traffic live load is applied. In addition, a set of design criteria closely related 

with this issue are established. 
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1. INTRODUCTION 

Under-deck cable-stayed bridges (Fig. 1) represent an innovative bridge type that has only 

been built on a few occasions over the last thirty years. Structural engineers such as Leonhardt [1], 

Schlaich [2], Virlogeux [3], Manterola [4] and Cremer [5] have designed bridges with this structural 

type. Under-deck cable-stayed bridges are a particular type of cable-stayed bridge in which the stay 

cables are located below the deck and are deviated through struts that, working under compression, 

introduce the cable deviation forces into the deck. The stay cables, which obviously work under 

tension, are self-anchored in the deck in the support sections over the abutments and piers (when these 

exist). The deck works both in compression and bending. Therefore, the structural behaviour of the 

bridge is a combination of axial and flexural response. Ruiz-Teran and Aparicio have outlined the 

state-of-the-art of this bridge type [6], have identified the parameters that govern its structural 

response [7], studied its structural behaviour and have proposed design criteria for both single-span [8] 

and multi-span [9] bridges of this type. Multiple advantages from different standpoints (structural 

efficiency, construction possibilities, economic and aesthetic considerations) have been identified 

through comparison with conventional bridges without stay cables [8,9]. Despite these advantages, 

proposals for construction using this bridge type have come up against resistance; such as in the case 

of the Kirchheim overpass. In 1987, Schlaich was given the job of designing a bridge with under-deck 

stay cables for the Kirchheim overpass [2]. He designed a portal frame with a main span of 45.2 m in 

which a slender deck of 0.40 m was supported by under-deck cables [10]. However, this innovative 

structure was not built because the state authority feared the possibility of the bridge collapsing in the 

case of a lorry with an extremely high load, above the legal limit, crashing into the under-deck cables 

and causing their sudden breakage [2]. 

Provided that there is sufficient clearance beneath the stay cables, this bridge type has been 

shown to be very appropriate for use in highway overpasses [8]. Therefore, the aim of this paper is to 

study the response of these bridges in the situation of accidental breakage of stay cables in order to 

prove that this bridge type has more capacity to overcome the sudden accidental breakage of stay 

cables than that required by codes. In this unlikely scenario, repair could easily be carried out without 
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affecting the traffic, provided that this circumstance had been considered during the design stage 

following appropriate design criteria. The study focuses on two different bridges that are each 

representative of this bridge type. The response of these two bridges under the accidental breakage of 

the stay cables in different potential scenarios is analysed by means of parametric analyses. In 

addition, the dynamic structural response following the breakage of the stay cables is obtained through 

time-domain analyses, rather than by pseudo-dynamic analyses using dynamic amplification factors 

(DAF). The latter method, that has been recommended by several associations (PTI [11], SETRA [12] 

and ACHE [13]) in their design guidelines for cable-stayed bridges, and that is also proposed 

implicitly in Eurocode 3 Part 1.11 [14] and explicitly in Eurocode 1 Part 1.7 [15], has been shown to 

be un-conservative [16], and thus inadvisable, for certain cases, such as those studied herein. This 

paper concludes with a set of recommendations for the design of under-deck cable-stayed bridges that 

are aimed to enable the accurate assessment of the response under the accidental breakage of stay 

cables, to enhance their capability to overcome this accidental situation, and to simplify the 

replacement of stay cables in the case that this is required. 

2. UNDER-DECK CABLE-STAYED BRIDGES WITH PRESTRESSED CONCRETE DECKS 

Two under-deck cable-stayed bridges have been designed: one with two struts and the other 

with multiple (fifteen) struts (Fig. 2). Both are single 80 m span bridges with prestressed concrete 

decks made up of 1-m deep voided slabs. The concrete characteristic strength in the deck is equal to 

40 and 35 MPa for the two-strut and multiple-strut bridges respectively. The under-deck cable-stayed 

system is made up of multiple strands (each with a cross section of 140 mm
2
 and with an ultimate 

tensile strength of 1860 MPa). The stay cables are self-anchored to the deck in the support sections 

over the abutments and are deviated by struts. The number of strands used is equal to 258 and 264 for 

the two-strut and multiple-strut bridge respectively. The stay-cable anchorages employed have 

conventional fatigue strengths, like those used for external prestressing. 

The analysis of the structural response of both bridges under several permanent and variable 

actions (dead load, superimposed dead load, prestressing of the stay cables, internal prestressing, time-

dependent effects and traffic live load) and a set of design criteria for transient and persistent situations 
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are published in [8]. 

3. ANALYSIS OF THE ACCIDENTAL BREAKAGE OF STAY CABLES IN CABLE-

STAYED BRIDGES 

The breakage of stay cables is an accidental action that has to be considered in the design of 

cable-stayed bridges as part of the requirements of codes [14] and guidelines [11,12,13,17]. In general, 

the accidental situation caused by the sudden breakage of one stay cable must be overcome by the 

bridge without reaching any ultimate limit state. So far, the structural response due to the accidental 

loss of stay cables has been analysed in a very simple way, amplifying the results obtained from a 

static analysis by a DAF. The guidelines for cable-stayed bridges that recommend this method 

[11,12,13] suggest values for DAFs less than or equal to 2, since this was considered to be an upper 

bound for DAFs in the case of a sudden breakage of stay cables. Eurocode 1 Part 1.7 [15] states that 2 

is an upper bound when the structure responds elastically and the load is suddenly applied. However, 2 

is an upper bound only for single degree of freedom systems. The authors have recently proven, both 

analytically and numerically, that DAFs can be larger than 2 [16] and, therefore, do not recommend 

these simple methods for cable-stayed structures. 

In the case of the accidental breakage of a stay cable, the tension load in the breaking stay 

cable is gradually lost over the time that the breakage occurs (breakage time). Before the breakage 

(Fig. 3a), the stay cable is under a certain tension load T0. After the complete breakage, the tension 

load in this stay cable is equal to zero. Therefore, the breakage load, a load with the same magnitude 

and opposite direction to T0, is gradually applied over the breakage time through a time-dependent 

function f(t) (Fig. 3b). Before the breakage, f(t) is equal to zero and, when the stay cable is completely 

broken, f(t) is equal to 1. f(t) is a continuous function whose behaviour depends on the nature of the 

breakage. After the start of the breakage of a stay cable the structure is not in static equilibrium since 

the tension load in the breaking stay cable begins to decrease. Due to the lack of static equilibrium, 

accelerations are induced that cause the structure to oscillate about a new equilibrium position that is 

finally reached when the oscillations have been completely damped out. The breakage load is applied 

dynamically and, therefore, a dynamic analysis is required to obtain the real response. 
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In the pseudo-dynamic method, the breakage load is applied statically and the obtained 

response is multiplied by the DAF. This DAF method (that is not recommended by the authors [16]) 

has been used in this paper in addition to the proper dynamic method in order to highlight the 

inappropriateness of its use. 

4. DYNAMIC RESPONSE OF AN UNDER-DECK CABLE-STAYED BRIDGE DUE TO 

ACCIDENTAL BREAKAGE OF STAY CABLES 

In this section, the dynamic response of under-deck cable-stayed bridges is analysed using the 

two example bridges introduced in Section 2. The dynamic response has been obtained by means of 

both direct time integration and modal superposition of the dynamical structural response in several 

linear 2D FE models developed with the commercial software SAP 2000 [18] using conventional 

techniques [19] with beam- and strut-type elements. In the two-strut bridge, 42 elements are used for 

modelling the deck, two for the struts, and three for the stay cables. In the multiple-strut bridge, 54 

elements are used for modelling the deck, 15 for the struts, and 16 for the stay cables. The area and 

moment of inertia of the deck are equal to 7.394 m
2
 and 0.724 m

4
 respectively. The densities of 

prestressed concrete and steel have been taken to be respectively equal to 2500 and 7850 kg/m
3
. A 

uniform additional mass due to the superimposed dead load equal to 4310 kg/m has also been 

introduced in the model. The axial strains in the struts have been neglected. The Young’s modulus for 

the stay cables, the 35MPa prestressed concrete and the 40MPa prestressed concrete are taken to equal 

190000, 29779 and 30891 MPa respectively. The struts have a pinned connection to the deck, as 

recommended in [8]. Both decks have one pinned and one roller support at each abutment. A damping 

ratio equal to 2% has been adopted in the FE models for all the vibrational modes, since similar values 

have been measured in two under-deck cable-stayed bridges (the Glacis Bridge [20] and the Takehana 

Bridge [21]). The first 15 vibrational modes have been considered. 

In this paper, two parametric studies have been performed, one for each bridge introduced in 

Section 2. The response of each bridge has been analysed by varying the following parameters: 

- Breakage time, i.e., the length of time over which the breakage occurs; 

- Type of breakage, i.e., the way in which the tension load is lost and thus the way in which the 
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breakage load is applied; 

- Load combinations. The breakage is developed in three different situations: (1) when there is no 

traffic live load over the deck; (2) when 50% of the total traffic live load is over the deck; and (3) 

when there is 100% of the traffic live load. The traffic load has been established according to the 

Spanish code [22], that prescribes a uniformly distributed load of 4 kN/m
2
 applied over the entire 

carriage-way width and one tandem system of 600 kN. The magnitude of the uniformly distributed 

load is 1.006 times that specified by Eurocode 1 Part 2 (9 kN/m
2
 over one 3m wide lane and 2.5 

kN/m
2
 over the rest of the carriage way) [23], while the tandem system has exactly the same 

magnitude. The accidental combination prescribed by the Spanish code [22] considers 50% of the 

traffic live load, while that prescribed by Eurocode [24] consider 40% for the uniformly 

distributed load and 75% for the tandem system; 

- Deviators. Two types of deviators have been considered: (1) either deviators with clamps that 

prevent the cable sliding in all situations or deviators at which the stay cables are anchored (the 

response in both cases being the same); and (2) deviators without clamps, in which sliding under 

service conditions is prevented by the friction loads; and, 

- Damage grade. Both bridges have been designed with five under-deck stay cables. The breakage 

of one, two, three, four and even five stay cables has been analysed. 

The combinations of these parameters lead to the different scenarios considered in the parametric 

analyses. 

Other parameters, such as the depth of the deck, the type of the transverse cross-section of the 

deck, the area of the stay cables, the eccentricity of the stay cables, the grade of presstressing, the links 

between different structural elements, etc, have not been considered in this paper, since they have 

previously been considered by the authors elsewhere [7,8,9] and their design criteria are governed by 

transient and persistent situations. The authors have deliberately selected two bridges (those 

introduced in section 2) that satisfy all the required serviceability and ultimate limit states in both 

transient and persistent situations so that the conclusions drawn from this study have relevance from a 

practical point of view. Therefore, this study is focussed on all those parameters discussed earlier that 
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relate to the response of the bridge under the breakage of stay cables. 

4.1 Breakage of stay cables in an under-deck cable-stayed bridge with two struts 

The accidental breakage of stay cables in the under-deck cable-stayed bridge with two struts is 

analysed in this subsection. Under permanent state, when the dead load, the superimposed dead load 

and the prestressing of the stay cables are applied, the axial load in the full section of the five stay 

cables is equal to 22.62 MN. This axial load increases to 28.37 MN when the 100% of the traffic live 

load is applied. 

4.1.1 Sensitivity of the dynamic response to the breakage time and the type of application of the 

breakage load 

The influence on the dynamic response of both the breakage time and the breakage load 

application has been analysed. The breakage load is gradually applied in time, t, by means of a 

function defined by Eq. (1): 

  0T
T

t
ftF

breakage













  (1) 

where f is the normalized shape-function used to apply the breakage load T0 over a time interval equal 

to the breakage time (Tbreakage). 

There is currently a lack of research regarding both the duration of the breakage time of stay 

cables due to accidental situations (such as collisions, explosions, etc.) and the way in which the 

tension load is lost (and consequently the way in which breakage load is applied), as these factors have 

not been relevant due to the use of the simple DAF approach. 

Due to this lack of information, the first step of the study was the consideration of whether or 

not the breakage time and the way in which the breakage load is applied have a significant influence 

on the dynamic response of this bridge type. Breakage times from 1/10000 to 10 times the 

fundamental period of the structure have been considered for the study. Seven different normalized 

shape-functions (defined and plotted in Fig. 4) have been used for applying the breakage load. Note 

that both the first (f1) and seventh (f7) normalized functions correspond to an instantaneous application 

of the breakage load. An initial parametric study has been conducted using both the breakage time and 
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the type of the normalized shape-function as parameters, analysing the dynamic response of this 

bridge under the breakage of one central under-deck stay cable when deviators have clamps. A total of 

164 scenarios have been analysed in order to gauge the sensitivity to these two parameters. The ratio 

between the maximum dynamic sagging bending moment and the static sagging bending moment in 

the mid-span section (i.e., the DAF related to sagging bending moments at mid-span) has been 

obtained and plotted in Fig. 5. From the obtained results, the following conclusions can be drawn: 

- The maximum value of the DAF and, therefore, the maximum dynamic response is obtained for a 

sudden application of the breakage load − i.e., for the first (f1) and the seventh (f7) normalized 

shape-functions; 

- When the breakage time lasts less than one hundredth of the fundamental period of the structure, 

the maximum value of the DAF is reached irrespective of the way in which the stay cable is 

broken and of the normalized shape-function that is used; 

- For breakage times less than the fundamental period of the structure, the shorter the breakage time, 

the larger both the DAF and the dynamic response; 

- The smallest DAFs, and, therefore, the smallest dynamic response, for a certain breakage time is 

obtained when the breakage load is gradually applied in a linear manner with time − i.e. when the 

fourth (f4) normalized shape-function is used. The larger the average slope of the normalized 

shape-function, the more the function resembles the sudden application case − i.e., the first (f1) and 

the seventh (f7) normalized shape-functions − and, therefore, the higher the DAFs and the dynamic 

response. Therefore, DAFs based on the first (f1) normalized shape-function are larger than those 

based the second (f2), which are in turn larger than those based on the third (f3). Similarly, DAFs 

based on the seventh (f7) normalized shape-function are larger than those based on sixth (f6), which 

are in turn larger than those based on the fifth (f5); 

- When the breaking load is gradually applied over a breakage time larger than the fundamental 

period of the structure, the dynamic response, and, therefore, the DAFs, are strongly influenced by 

the value of the ratio between the breakage time and the fundamental period of the structure after 

the loss of the stay cable (see Fig. 5; the DAFs obtained using the fourth (f4) normalized shape-
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function and, to a lesser extent, using the third (f3)). When this ratio is close to an integer, the 

dynamic response, and, therefore, the DAF, is heavily reduced. On the other hand, when this ratio 

is close to the mean of two adjacent integers, both the dynamic response and the DAF are largely 

amplified. This behaviour is due to a resonant effect. Fig. 6 has been sketched to clarify this 

phenomenon. When the breakage time is equal to the fundamental period of the bridge (see Fig 

6a), the first half of the breakage load is applied in phase with the displacement of the structure 

(both have the same direction) whereas the second half of the breakage load is applied out of 

phase with the displacement of the structure, resulting in a reduction of the net motion. When the 

breakage time is equal to 1.5 times the fundamental period of the bridge (see Fig 6b), the first and 

last third of the breakage load is applied in phase with the displacement of the structure and only 

the second third is applied against the displacement of the structure. Consequently, the dynamic 

response is increased in comparison with the previous case in which the breakage time was equal 

to the fundamental period. The same effect explains the remaining peaks and valleys in Fig. 5 for 

larger breakage times; and, 

- Even when the breakage load is linearly applied (for the fourth (f4) normalized shape-function), 

the DAFs are larger than 2 over a wide range of breakage times shorter than 0.6 seconds. Breakage 

times smaller than this are likely and foreseeable and, therefore, DAFs smaller than 2 are un-

conservative for this bridge type. 

When the breakage time is negligible in comparison to the fundamental period of the structure 

(i.e., for breakage times smaller that one hundredth of the fundamental period of the structure), the 

shape of the function that defines the type of application of the breakage load (i.e., the way in which 

the stay cable load is lost) has no influence on the dynamic response. However, when the breakage 

time is of the order of the fundamental period of the structure, its shape has a large influence on it. For 

this bridge, the fundamental periods are longer than one second (1.25 seconds for the undamaged 

bridge and 1.28 seconds for the damaged bridge with one stay cable broken), whereas the accidental 

breakage might occur in hundredths or thousandths of a second. Consequently, for this bridge type in 

practical accidental situations of sudden breakage of stay cables, the function that defines the way in 
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which the stay cable is broken has practically no influence on the response. Therefore, a sudden 

breakage load, using f1(t), that is also a conservative upper bound, has been considered for the rest of 

the analyses in this paper. 

4.1.2 Comparison of the envelopes of internal forces obtained from pseudo-dynamic and dynamic 

analysis 

Fig. 7 shows the bending moment envelopes along the deck, normalized with respect to the 

static bending moment at mid-span, due to the sudden breakage of one central under-deck stay cable 

(when deviators have clamps) obtained by both methods: the pseudo-dynamic analysis (with DAF= 2) 

and a full dynamic analysis. From inspection of this figure it is clear that DAFs (related to sagging 

bending moments) should take values larger than 2. Moreover, hogging bending moments that cannot 

be predicted with a pseudo-dynamic analysis using positive DAFs occur all along the bridge. All of the 

areas with bending moments that are not conservatively predicted when using a pseudo-dynamic 

analysis with a DAF equal to 2 have been shaded. The maximum sagging and hogging bending 

moments appear in the first moments after the breakage (see Fig. 8), when higher order dynamic 

modes with a negative projection over the static response have not yet been damped out [16]. These 

higher order dynamic modes that have a negative projection over the static response cause the 

occurrence of both positive DAFs larger than 2 and negative DAFs [16]. Therefore, positive and 

negative DAFs would be required for estimating the maximum sagging and hogging bending 

moments. These DAFs should take different values in each different section, as the shapes of the 

envelopes obtained from a pseudo-dynamic analysis are quite different to those obtained from a full 

dynamic analysis (see Fig. 7). 

Shear and axial forces have also been analysed and the results are presented in Table 1. Six 

sections have been considered: S1 located in the deck 15 m from the abutments; S2 located in the 

deck, immediately adjacent to the connection to the strut, in the section between the abutment and the 

struts; S3 located in the deck, immediately adjacent to the connection to the strut, in the section 

between the two struts; S4 located in the deck, at mid-span; S5 located in the lateral stay cables; and 

S6 located in the central stay cables. The DAFs related to axial forces are larger than those related to 
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shear forces, and those, in turn, are larger than those related to bending moments. Every section and 

every internal force require a different pair of DAFs (one positive and one negative), and even in some 

cases these DAFs tend to infinity as the magnitude of the static values tend to, or are, zero. Therefore, 

no DAF can be defined as a conservative value recommendable for design in all the sections and for 

all the internal forces. Consequently, only a proper dynamic analysis should be used to accurately 

predict the structural response under a dynamic action such as the breakage of a stay cable and 

consequently the use of the DAF method should be ceased henceforth. 

4.1.3 Comparison of the dynamic responses resulting from the breakage of a central and a lateral stay 

cable 

The sudden breakage of a lateral under-deck stay cable (in the section between the anchorage 

in the support section and the clamp at the deviator) has also been analysed. Fig. 9 represents the 

bending moment envelopes for the deck due to the accidental breakage of both a lateral and a central 

stay cable. Both envelopes are quite similar. The average difference between both of them is equal to 

2%, although in some particular sections the difference is higher (21% in the section close to the left 

strut and 9% in the mid-span section). 

4.1.4 Influence of the type of deviator in the dynamic response following the breakage of stay cables 

If the deviators have no clamps, the stay cables are lost along their entire length (between their 

two anchorages in the support sections of the deck) in the case of their accidental breakage. This 

scenario has also been considered in Fig 9. This accidental breakage produces identical effects to the 

simultaneous breakage of three stay cables (one central and one lateral on each side) when deviators 

have clamps. Therefore, the values of the envelopes of the internal forces in this case almost triple 

those when the failure is concentrated in a central or lateral stay cable. 

4.1.5 Influence of the presence of traffic live load over the bridge when the breakage occurs 

The sudden accidental breakage of stay cables has been analysed considering the possibility 

that a certain percentage (0%, 50% and 100%) of the traffic live load is also applied over the bridge 

when the failure of the stay cables occurs. The higher the traffic live load applied, the larger the axial 

load lost (i.e., the larger the breakage load), and the larger the internal forces due to the breakage of 



Cite this paper as: Ruiz-Teran AM, Aparicio AC, 2009, Response of under-deck cable-stayed bridges 
to the accidental breakage of stay cables, Engineering Structures, Vol:31, ISSN:0141-0296, 
Pages:1425-1434 [DOI: 10.1016/j.engstruct.2009.02.027] 
 

- 13 - 

the stay cables. 

4.1.6 Capacity to overcome the accidental situation when several stay cables are broken 

The paths traced over time by the design values of the internal forces (in the sections defined 

previously) after the breakage of two stay cables when 50% of the traffic live load is applied are 

presented in Fig 10, for deviators with (case a) and without (case b) clamps. The design values in the 

deck have been plotted for two different load combinations: one (in black) maximizing the sagging 

bending moments and one (in grey) maximizing the hogging bending moments. The resistances have 

also been represented. Regardless of the deviator type, this bridge has more than enough capacity to 

overcome this accidental scenario. 

The paths traced out over time by the stresses in the central stay cables after the breakage of 

one, two, and three stay cables have been plotted in Fig. 11 for two different levels of traffic live load 

(0% and 100%) and two different deviator types.  The axial strength (1860 MPa) of the stay cables has 

also been included. The bridge has enough capacity to overcome the breakage of two stay cables, 

regardless of the percentage of traffic live load applied during the breakage and the anchorage type. 

However, the bridge cannot overcome the breakage of three stay cables even if no traffic live load is 

applied, since the stay cables have insufficient tensile capacity to resist the design values. 

The use of deviators without clamps significantly increases the magnitudes of the design 

bending moments (see Fig. 10b), as explained previously in section 4.1.4. When three stay cables are 

broken and this deviator type is used, the failure also occurs due to the fact that the design sagging 

bending moments in the deck are larger than the bending resistance (in addition to the aforementioned 

fact that the stay cables have insufficient axial resistance). Using this deviator type, the maximum 

stresses in the stay cables are amplified by approximately a 10% in comparison to those when using 

deviators with clamps. 

4.2 Breakage of stay cables in an under-deck cable-stayed bridge with multiple struts 

The accidental breakage of stay cables in the under-deck cable-stayed bridge with multiple 

struts is analysed in this subsection. In permanent state, when the dead load, the superimposed dead 

load and the prestressing of the stay cables are applied, the axial load in the full section of five stay 
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cables is equal to 22.86 MN. This axial load increases to 28.77 MN when 100% of the traffic live load 

is applied. 

In under-deck cable-stayed bridges with multiple struts, the use of clamps at all of the 

deviators significantly reduces the response under the accidental breakage of stay cables but leads to 

an increase in the cost that may not be justified. Due to this, the only deviator type that has been 

considered here is that without clamps. In this scenario, the entire length of the cable is lost when the 

breakage occurs. Fig. 12 is the replication of Fig. 7 for this bridge type. All the conclusions inferred 

from Fig. 7 are also applicable to Fig. 12. 

The results obtained from a similar parametric study to that previously described for a two-

strut under-deck cable-stayed bridge show that this bridge is also able to overcome the breakage of 

two out of five stay cables, regardless of the percentage of the traffic live load that is applied during 

the breakage (Fig 13). 

Both bridges, with two and multiple struts, have a similar behaviour under the accidental 

breakage of stay cables. Consequently, the conclusions drawn earlier regarding the behaviour under 

the accidental breakage of stay cables can be generically extended to the entire bridge type, regardless 

of the number of struts used. 

5. DESIGN RECOMMENDATIONS 

Based on this study, the following set of design criteria related to the assessment of the 

dynamic response under the accidental breakage of stay cables and the characteristics of the deviator 

recommended for under-deck cable-stayed bridges is established: 

- The response of this bridge type under the accidental breakage of stay cables must be analysed by 

means of a full dynamic analysis and not by the DAF method currently recommended in several 

guidelines [11,12,13] and proposed implicitly by Eurocode 3 Part 1.11 [14] and explicitly by 

Eurocode 1 Part 1.7 [15]; 

- If the design breakage time is equal to or smaller than one percent of the fundamental period of the 

structure (after the breakage), the way in which the stay cable breaks does not affect the dynamic 

response and, therefore, the simplest case of a sudden breakage can be assumed. On the other 
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hand, if the design breakage time is larger than this value, the case of a sudden breakage can be 

considered as a conservative upper bound, although the consideration of the way in which the 

cable breaks, through a normalized shape function appropriate for design, can significantly reduce 

the dynamic response obtained (especially when the breakage time is larger than the fundamental 

period of the structure). Further investigations are required in order to identify the most 

appropriate breakage functions for design; 

- The dynamic breakage load that has to be considered in the dynamic analysis depends on the load 

that is carried by the broken stay cables before the breakage (and, therefore, on the load 

combination before the breakage) and also on the deviator type used. If the deviators have no 

clamps (Fig. 14 a), the broken cable is completely lost along its entire length, whereas, if the 

deviators have either clamps or anchorages that are able to anchor the broken cables between the 

sections where they have not been damaged (Fig. 14 c and d), the broken cables are only lost 

between deviators; 

- Deviators with clamps capable of anchoring the broken stay cables after the breakage (Fig. 14 c 

and d) enhance the capacity of the structure to overcome the accidental situation of breakage of 

stay cables but increase the price of the structure. These clamps must be designed to resist a 

clamping load equal to the maximum dynamic tension in the broken stay cable in those sections 

not affected by the breakage; 

- The design of deviators with guide-tubes (Fig 14 b) simplifies the threading of the stay cables; 

and, 

- The use of extra guide-tubes (Fig. 14 b) that remain empty during the service-life of the bridge is 

advisable, allowing: (1) the substitution of a stay cable without closing the upper and lower roads; 

and (2) the reinforcement of the structure if required. 

6. CONCLUSIONS 

Under-deck cable-stayed bridges are an appropriate structural solution for highway overpasses 

as long as there is enough vertical clearance to position the under-deck stay cables. In this paper the 

doubts that have emerged over the possibility of collapse of this type of bridge due to the breakage of 
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stay cables following an accidental collision have been shown to be unfounded. The example bridges 

considered herein are able to overcome the accidental breakage of two out of five of the stay cables, 

even when 100% of the traffic live load is applied over the bridge. This accidental scenario is far more 

severe than that demanded by codes (breakage of one stay when 50% of the traffic live load is 

applied). Furthermore, if the unlikely scenario of the sudden breakage of stay cables occurs, the repair 

of the structure could be carried out in a simpler, quicker and cheaper way than in the case of a 

conventional structure, and even without affecting the traffic, as long as this circumstance had been 

catered for during the design stage. A set of design criteria related to the assessment of the dynamic 

response under the accidental breakage of stay cables and the recommended characteristics of the 

deviators for under-deck cable-stayed bridges (in order to enhance their capability to overcome this 

accidental situation and also to simplify the replacement of stay cables in the case that it is required) 

has been established. In addition, the inappropriateness of the DAF approach for analysing the 

response due to the breakage of stay cables has been highlighted and a full dynamic analysis is 

strongly recommended in its place. 
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Fig. 1. Truc de la Fare overpass, designed by Michael Virlogeux (courtesy of Nicolas Janberg, 

www.structurae.de) 
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Fig. 2. Under-deck cable-stayed bridges: a) elevation with 2 struts, b) elevation with multiple struts, c) 

calculation cross-section in both cases, d) real cross-section in both cases. 

Values in units of m. 
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Fig. 3. Breakage of a stay cable and dynamic application of the breakage load. Schemes a) before and 

b) after the breakage of the stay cable. 
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Fig. 4. Shape of the seven different normalized shape functions f(t) considered for the application of 

the breakage load over the breakage time (T) 
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Fig. 5. Dynamic amplification factor (DAF) related to sagging bending moments in the mid-span 

section obtained using different normalized shape functions f(t). Case: breakage of one stay cable in 

the 2 strut-bridge when the deviators have clamps and no traffic load is applied.  
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Fig. 6. Simple schemes showing the relation – in phase (iph) or out of phase (oph) – between the 

dynamic vibration of the structure and the deflections due to the breakage load. a) The breakage time 

is equal to the fundamental period of the structure; b) the breakage time is 1.5 times the fundamental 

period of the structure. 



Cite this paper as: Ruiz-Teran AM, Aparicio AC, 2009, Response of under-deck cable-stayed bridges 
to the accidental breakage of stay cables, Engineering Structures, Vol:31, ISSN:0141-0296, 
Pages:1425-1434 [DOI: 10.1016/j.engstruct.2009.02.027] 
 

- 25 - 

 

Fig. 7. Comparison between the bending moment envelopes in the deck obtained with dynamic and 

pseudo-dynamic analysis. Case: breakage of one stay cable in the 2-strut bridge when the deviators 

have clamps and no traffic load is applied. 
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Fig. 8. Ratio between dynamic and static bending moments in the mid-span section versus time. Case: 

breakage of one stay cable in the 2 strut-bridge when the deviators have clamps and no traffic load is 

applied. 
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Fig. 9. Comparison between the dynamic bending moment envelopes in the deck due to the accidental 

breakage of one lateral (left) stay cable (deviators with clamps), one central stay cable (deviators with 

clamps) and one entire stay cable (deviators without clamps). 
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Fig. 10. Diagrams representing both the path traced over time by the design values (bending moments 

(M), axial loads (N) and stresses ()) and the corresponding resistances in sections S1, S2, S3 and S4 

of the deck and sections S5 and S6 of the stay cables for the two-strut bridge due to the breakage of 2 

stay cables when 50% of the traffic live load is applied. Deviators with (a) and without (b) clamps. 
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Fig. 11. Diagrams representing the design stresses in the central stay cables (section S6) () against 

time due to the breakage of a certain number of stay cables (nb) in the 2-strut bridge, when 0% and 

100% of the traffic live load is applied, and the resistances of the stay cables. Deviators with (a) and 

without (b) clamps. 
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Fig. 12. Comparison between the bending moment envelopes in the deck obtained with dynamic and 

pseudo-dynamic analysis. Case: breakage of one stay cable in the multiple-strut bridge when deviators 

have no clamps and no traffic load is applied.  
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Fig. 13. Diagrams representing the design stresses in the stay cables () against time due to the 

breakage of a certain number of stay cables (nb) in the multiple-strut bridge (deviators without 

clamps), when 0% and 100% of the traffic live load is applied, and the resistances of the stay cables. 
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Fig. 14. Deviators a) with saddles, in Truc de la Fare overpass (courtesy of Nicolas Janberg, 

www.structurae.de); b) with guide-tubes, in Osormort viaduct; c) with intermediate anchorages, in 

Jumet footbridge (courtesy of Jean Marie Cremer, Bureau Greisch); and d) with clamps, in Seiryuu 

footbridge (courtesy of Meguru Tsunomoto, Oriental Construction Co). 
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Table 1. 

Maximum and minimum dynamic and static values of the bending moments, shear and axial forces, 

and axial stresses and their corresponding DAFs, in certain sections of the two-strut bridge under the 

breakage of one central stay cable when deviators have clamps and no traffic load is applied. 

 Maximum 

dynamic 

value 

Minimum 

dynamic 

value 

Static value DAF 
+
 DAF 

-
 

Bending moment in S1 

(MN.m) 

1.965 -0.521 0.768 2.53 -0.678 

Bending moment in S2 and 

S3 (MN.m) 

1.94 0 1.365 1.42 0 

Bending moment in S4 

(MN.m) 

3.811 -1.14 1.365 2.79 -0.84 

Shear force in S1 (MN) 0.063 -0.162 -0.051 3.18 -1.24 

Shear force in S2 (MN) 0.187 -0.433 -0.051 8.49 -3.67 

Shear force in S3 (MN) 0.453 -0.311 0 → +∞ → -∞ 

Shear force in S4 (MN) 0.052 -0.041 0 → +∞ → -∞ 

Axial force in S1 (MN) 3.884 -2.366 0.163 23.83 -14.52 

Axial force in S2 (MN) 5.087 -2.228 0.163 31.21 -13.67 

Axial force in S3 (MN) 5.237 -2.263 0.171 30.62 -13.23 

Axial force in S4 (MN) 4.845 -2.048 0.171 28.33 -11.98 

Axial stress in S5 (MPa) 37.594 -97.903 -4.734 20.68 -7.94 

Axial stress in S6 (MPa) 163.220 0 120.515 1.35 0 

 

 


