235 research outputs found
Intensifying a crop–fallow system: impacts on soil properties, crop yields, and economics
Intensifying crop–fallow systems could address increased weed control costs, increased land or rental costs, reduced crop diversity, and degraded soil properties in water-limited environments. One strategy to intensify such systems could be the insertion of a short-season crop during fallow. But, how this strategy affects soils, crop production, and farm economics needs further research. Thus, we studied the impacts of replacing fallow in a winter wheat (Triticum aestivum L)–corn (Zea mays L.)–fallow system with a short-season spring crop [field pea (Pisum sativum L.)] on crop yields and economics from 2015 to 2019 and 5-yr cumulative effects on soil properties using an experiment in the west-central US Great Plains. After 5 yr, replacing fallow with field pea increased microbial biomass by 294 nmol g−1 and plant available water by 0.08 cm3 cm−3 , and reduced bulk density by 0.1 g cm−3 and cone index by 0.73 MPa in the 0–5 cm depth. It had, however, no effect on other soil properties. Field pea yield averaged 2.24 Mg ha−1 . Field pea reduced subsequent crop yield by 15–25% in two of three crops compared with fallow. However, economic analysis showed replacing fallow with field pea may improve net income by 65 ha−1 in favor of fallow. Replacing fallow in winter wheat–corn–fallow rotation with a short-season spring crop offers promise to improve some near-surface soil properties while increasing net economic return during fallow under the conditions of this stud
No-till farming and greenhouse gas fluxes: Insights from literature and experimental data
Tillage intensity may differently impact gaseous losses of C and N to the atmosphere, but data from long-term experiments are relatively few. Yet, this information is needed to better understand C and N losses and gains in agricultural systems. The objective of this study was to determine how tillage intensity affects soil greenhouse gas (GHG) fluxes (CO2, N2O, and CH4) by comparing experimental data from moldboard plow (MP), chisel plow (CP), double disk (DD), and no-till (NT) soils after 38–40 yr of management in a rainfed corn (Zea mays L.)- soybean (Glycine max (L.) Merr) cropping system. We also reviewed global literature to evaluate the impacts of tillage on soil GHG emissions. After 38–40 yr of management, CO2 fluxes decreased in this order: MP \u3e CP ≈ DD \u3e NT, indicating that as tillage intensity decreased, CO2 fluxes decreased. Indeed, daily CO2 fluxes were typically lower under NT than under MP and CP. Similarly, the overall cumulative CO2 fluxes across 26-mo of measurement were 1.4–1.8 times lower with NT than MP, CP, and DD soils. Also, MP soils had 1.3 times higher CO2 fluxes than CP and DD soils. These results are similar to those from our global literature review of 60 studies on CO2 fluxes. The reduction in CO2 fluxes in NT was likely due to a combination of increased residue cover, reduced soil temperature (r = 0.71; n = 12; p \u3c 0.001), and increased water content (r = 0.75; n = 12; p \u3c 0.001). Daily N2O and CH4 fluxes were highly variable; and cumulative fluxes across the 26-mo study were unaffected by tillage, mirroring findings of our literature review of 37 papers on N2O fluxes and 24 on CH4 fluxes. Overall, based on the data from both the long-term experiment and literature review, NT appears to be the best option to reduce losses of CO2 followed by reduced till (DD), but N2O and CH4 fluxes do not generally differ with tillage intensity
Can Cover Crop Use Allow Increased Levels of Corn Residue Removal for Biofuel in Irrigated and Rainfed Systems?
Corn (Zea mays L.) residue removal at high rates can result in negative impacts to soil ecosystem services. The use of cover crops could be a potential strategy to ameliorate any adverse effects of residue removal while allowing greater removal levels. Hence, the objective of this study was to determine changes in water erosion potential, soil organic C (SOC) and total N concentration, and crop yields under early- and late-terminated cover crop (CC) combined with five levels of corn residue removal after 3 years on rainfed and irrigated no-till continuous corn in Nebraska. Treatments were no CC, early- and late-terminated winter rye (Secale cereale L.) CC, and 0, 25, 50, 75, and 100% corn residue removal rates. Complete residue removal reduced mean weight diameter (MWD) of water-stable aggregates (5 cm depth) by 29% compared to no removal at the rainfed site only, suggesting increased water erosion risk at rainfed sites. Late-terminated CC significantly increased MWD of water-stable aggregates by 27 to 37% at both sites compared to no CC, but early-terminated CC had no effect. The increased MWD with late-terminated CC suggests that CC when terminated late can offset residue removal-induced risks of water erosion. Residue removal and CC did not affect SOC and total soil N concentration. Particulate organic matter increased with late-terminated CC at the irrigated site compared to no CC. Complete residue removal increased irrigated grain yield by 9% in 1 year relative to no removal. Late-terminated CC had no effect on corn yield except in 1 year when yield was 8% lower relative to no CC due to low precipitation at corn establishment. Overall, late-terminated CC ameliorates residue removal-induced increases in water erosion potential and could allow greater levels of removal without reducing corn yields in most years, in the short term, under the conditions of this study
Norovirus whole genome sequencing by SureSelect target enrichment: a robust and sensitive method
Norovirus full genome sequencing is challenging due to sequence heterogeneity between genomes. Previous methods have relied on PCR amplification, which is problematic due to primer design, and RNASeq which non-specifically sequences all RNA in a stool specimen, including host and bacterial RNA.Target enrichment uses a panel of custom-designed 120-mer RNA baits which are complementary to all publicly available norovirus sequences, with multiple baits targeting each position of the genome, thus overcoming the challenge of primer design. Norovirus genomes are enriched from stool RNA extracts to minimise sequencing non-target RNA.SureSelect target enrichment and Illumina sequencing was used to sequence full genomes from 507 norovirus positive stool samples with RT-qPCR Ct values 10-43. Sequencing on an Illumina MiSeq in batches of 48 generated on average 81% on-target-reads per sample and 100% genome coverage with >12,000-fold read depth. Samples included genotypes GI.1, GI.2, GI.3, GI.6, GI.7, GII.1, GII.2, GII.3, GII.4, GII.5, GII.6, GII.7, GII.13, GII.14 and GII.17. Once outliers are accounted for, we generate over 80% genome coverage for all positive samples, regardless of Ct value.164 samples were tested in parallel with conventional PCR genotyping of the capsid shell domain. 164/164 samples were successfully sequenced, compared to 158/164 that were amplified by PCR. Four of the samples that failed capsid PCR had low titres, suggesting target enrichment is more sensitive than gel-based PCR. Two samples failed PCR due to primer mismatches; target enrichment uses multiple baits targeting each position, thus accommodating sequence heterogeneity between norovirus genomes
A comprehensive characterization of chronic norovirus infection in immunodeficient hosts.
Letter to the edito
Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis.
Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuV(JL5)) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuV(JL5) associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuV(JL5) isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections
Viral Networks: Connecting Digital Humanities and Medical History
This volume of original essays explores the power of network thinking and analysis for humanities research. Contributing authors are all scholars whose research focuses on a medical history topic—from the Black Death in fourteenth-century Provence to psychiatric hospitals in twentieth-century Alabama. The chapters take readers through a variety of situations in which scholars must determine if network analysis is right for their research; and, if the answer is yes, what the possibilities are for implementation. Along the way, readers will find practical tips on identifying an appropriate network to analyze, finding the best way to apply network analysis, and choosing the right tools for data visualization. All the chapters in this volume grew out of the 2018 Viral Networks workshop, hosted by the History of Medicine Division of the National Library of Medicine (NIH), funded by the Office of Digital Humanities of the National Endowment for the Humanities, and organized by Virginia Tech
Probing the MSSM Higgs Boson Sector with Explicit CP Violation through Third Generation Fermion Pair Production at Muon Colliders
We perform a systematic study of the production of a third-generation
fermion-pair, for , and t in the minimal
supersymmetric standard model (MSSM) with explicit CP violation, which is
induced radiatively by soft trilinear interactions related to squarks of the
third generation. We classify all the observables for probing the CP property
of the Higgs bosons constructed by the initial muon beam polarization along
with the unpolarized final fermions and with the final-fermion polarization
configuration of equal helicity, respectively. The observables allow for
complete determination of CP property of the neutral Higgs bosons. The
interference between the Higgs boson and gauge boson contributions also could
provide a powerful method for the determination of the CP property of two heavy
Higgs bosons in the top-quark pair production near the energy region of the
Higgs-boson resonances. For the lightest Higgs-boson mass there is no sizable
interference between scalar and vector contributions for the determination of
the CP property of the lightest Higgs boson. We give a detailed numerical
analysis to show how the radiatively-induced CP violation in the Higgs sector
of the MSSM can be measured.Comment: 30 pages, 7 figures including 5 eps ones. Typos corrected and
references added. To appear in Phys. Rev.
- …