21 research outputs found

    Optimum experimental designs for models with a skewed error distribution : with an application to stochastic frontier models

    Get PDF
    In this thesis, optimum experimental designs for a statistical model possessing a skewed error distribution are considered, with particular interest in investigating possible parameter dependence of the optimum designs. The skewness in the distribution of the error arises from its assumed structure. The error consists of two components (i) random error, say V, which is symmetrically distributed with zero expectation, and (ii) some type of systematic error, say U, which is asymmetrically distributed with nonzero expectation. Error of this type is sometimes called 'composed' error. A stochastic frontier model is an example of a model that possesses such an error structure. The systematic error, U, in a stochastic frontier model represents the economic efficiency of an organisation. Three methods for approximating information matrices are presented. An approximation is required since the information matrix contains complicated expressions, which are difficult to evaluate. However, only one method, 'Method 1', is recommended because it guarantees nonnegative definiteness of the information matrix. It is suggested that the optimum design is likely to be sensitive to the approximation. For models that are linearly dependent on the model parameters, the information matrix is independent of the model parameters but depends on the variance parameters of the random and systematic error components. Consequently, the optimum design is independent of the model parameters but may depend on the variance parameters. Thus, designs for linear models with skewed error may be parameter dependent. For nonlinear models, the optimum design may be parameter dependent in respect of both the variance and model parameters. The information matrix is rank deficient. As a result, only subsets or linear combinations of the parameters are estimable. The rank of the partitioned information matrix is such that designs are only admissible for optimal estimation of the model parameters, excluding any intercept term, plus one linear combination of the variance parameters and the intercept. The linear model is shown to be equivalent to the usual linear regression model, but with a shifted intercept. This suggests that the admissible designs should be optimal for estimation of the slope parameters plus the shifted intercept. The shifted intercept can be viewed as a transformation of the intercept in the usual linear regression model. Since D_A-optimum designs are invariant to linear transformations of the parameters, the D_A-optimum design for the asymmetrically distributed linear model is just the linear, parameter independent, D_A-optimum design for the usual linear regression model with nonzero intercept. C-optimum designs are not invariant to linear transformations. However, if interest is in optimally estimating the slope parameters, the linear transformation of the intercept to the shifted intercept is no longer a consideration and the C-optimum design is just the linear, parameter independent, C-optimum design for the usual linear regression model with nonzero intercept. If interest is in estimating the slope parameters, and the shifted intercept, the C-optimum design will depend on (i) the design region; (ii) the distributional assumption on U; (iii) the matrix used to define admissible linear combinations of parameters; (iv) the variance parameters of U and V; (v) the method used to approximate the information matrix. Some numerical examples of designs for a cross-sectional log-linear Cobb-Douglas stochastic production frontier model are presented to demonstrate the nonlinearity of designs for models with a skewed error distribution. Torsney's (1977) multiplicative algorithm was implemented in finding the optimum designs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Increasing Autonomy of Unmanned Aircraft Systems Through the Use of Imaging Sensors

    No full text
    The range of missions performed by Unmanned Aircraft Systems (UAS) has been steadily growing in the past decades thanks to continued development in several disciplines. The goal of increasing the autonomy of UAS's is widening the range of tasks which can be carried out without, or with minimal, external help. This thesis presents methods for increasing specific aspects of autonomy of UAS's operating both in outdoor and indoor environments where cameras are used as the primary sensors. First, a method for fusing color and thermal images for object detection, geolocation and tracking for UAS's operating primarily outdoors is presented. Specifically, a method for building saliency maps where human body locations are marked as points of interest is described. Such maps can be used in emergency situations to increase the situational awareness of first responders or a robotic system itself. Additionally, the same method is applied to the problem of vehicle tracking. A generated stream of geographical locations of tracked vehicles increases situational awareness by allowing for qualitative reasoning about, for example, vehicles overtaking, entering or leaving crossings. Second, two approaches to the UAS indoor localization problem in the absence of GPS-based positioning are presented. Both use cameras as the main sensors and enable autonomous indoor ight and navigation. The first approach takes advantage of cooperation with a ground robot to provide a UAS with its localization information. The second approach uses marker-based visual pose estimation where all computations are done onboard a small-scale aircraft which additionally increases its autonomy by not relying on external computational power

    Editing, Streaming and Playing of MPEG-4 Facial Animations

    No full text
    Computer animated faces have found their way into a wide variety of areas. Starting from entertainment like computer games, through television and films to user interfaces using “talking heads”. Animated faces are also becoming popular in web applications in form of human-like assistants or newsreaders. This thesis presents a few aspects of dealing with human face animations, namely: editing, playing and transmitting such animations. It describes a standard for handling human face animations, the MPEG-4 Face Animation, and shows the process of designing, implementing and evaluating applications compliant to this standard. First, it presents changes introduced to the existing components of the Visage|toolkit package for dealing with facial animations, offered by the company Visage Technologies AB. It also presents the process of designing and implementing of an application for editing facial animations compliant to the MPEG-4 Face Animation standard. Finally, it discusses several approaches to the problem of streaming facial animations over the Internet or the Local Area Network (LAN)

    Bridging the Sense-Reasoning Gap using the Knowledge Processing Middleware DyKnow

    No full text
    Abstract. To achieve sophisticated missions an autonomous UAV operating in a complex and dynamic environments must create and maintain situational awareness. It is achieved by continually gathering information from many sources, selecting the relevant information for the current task, and deriving models about the environment and the UAV itself. Often models close to the sensor data, suitable models are required to bridge the sense-reasoning gap. This paper presents how DyKnow, a knowledge processing middleware, can bridge the gap in a concrete UAV traffic monitoring application. In the presented example sequences of color and thermal images are used to construct and maintain qualitative object structures modeling the parts of the environment necessary to recognize the traffic behavior of the tracked vehicles in realtime. The system has been implemented and tested both in simulation and on data collected during test flights. 1

    Hastily formed knowledge networks and distributed situation awareness for collaborative robotics

    No full text
    In the context of collaborative robotics, distributed situation awareness is essential for  supporting collective intelligence in teams of robots and human agents where it can be used for both individual and collective decision support. This is particularly important in applications pertaining to emergency rescue and crisis management. During operational missions, data and knowledge are gathered incrementally and in different ways by heterogeneous robots and humans. We describe this as the creation of Hastily Formed Knowledge Networks (HFKNs). The focus of this paper is the specification and prototyping of a general distributed system architecture that supports the creation of HFKNs by teams of robots and humans. The information collected ranges from low-level sensor data to high-level semantic knowledge, the latter represented in part as RDF Graphs. The framework includes a synchronization protocol and associated algorithms that allow for the automatic distribution and sharing of data and knowledge between agents. This is done through the distributed synchronization of RDF Graphs shared between agents. High-level semantic queries specified in SPARQL can be used by robots and humans alike to acquire both knowledge and data content from team members. The system is empirically validated and complexity results of the proposed algorithms are provided. Additionally, a field robotics case study is described, where a 3D mapping mission has been executed using several UAVs in a collaborative emergency rescue scenario while using the full HFKN Framework.Funding Agencies|ELLIIT Network Organization for Information and Communication Technology, Sweden (Project B09) and the Swedish Foundation for Strategic Research SSF (Smart Systems Project RIT15-0097). The first author is also supported by an RExperts Program Grant 2020A1313030098 from the Guangdong Department of Science and Technology, China in addition to a Sichuan Province International Science and Technology Innovation Cooperation Project Grant 2020YFH0160.</p

    Micro Unmanned Aerial Vehicle Visual Servoing for Cooperative Indoor Exploration.

    No full text
    Abstract—Recent advances in the field of Micro Unmanned Aerial Vehicles (MAVs) make flying robots of small dimensions suitable platforms for performing advanced indoor missions. In order to achieve autonomous indoor flight a pose estimation technique is necessary. This paper presents a complete system which incorporates a vision-based pose estimation method to allow a MAV to navigate in indoor environments in cooperation with a ground robot. The pose estimation technique uses a lightweight Light Emitting Diode (LED) cube structure as a pattern attached to a MAV. The pattern is observed by a ground robot’s camera which provides the flying robot with the estimate of its pose. The system is not confined to a single location and allows for cooperative exploration of unknown environments. It is suitable for performing missions of a search and rescue nature where
    corecore