35 research outputs found

    Factors associated with return of spontaneous circulation after out-of-hospital cardiac arrest in Poland : a one-year retrospective study

    Get PDF
    Background: Out-of-hospital cardiac arrest (OHCA) is a common reason for calls for intervention by emergency medical teams (EMTs) in Poland. Regardless of the mechanism, OHCA is a state in which the chance of survival is dependent on rapid action from bystanders and responding health professionals in emergency medical services (EMS). We aimed to identify factors associated with return of spontaneous circulation (ROSC). Methods: The medical records of 2137 EMS responses to OHCA in the city of Wroclaw, Poland between July 2017 and June 2018 were analyzed. Results: The OHCA incidence rate for the year studied was 102 cases per 100,000 inhabitants. EMS were called to 2317 OHCA events of which 1167 (50.4%) did not have resuscitation attempted on EMS arrival. The difference between the number of successful and failed cardiopulmonary resuscitations (CPRs) was statistically significant (p < 0.001). Of 1150 patients in whom resuscitation was attempted, ROSC was achieved in 250 (27.8%). Rate of ROSC was significantly higher when CPR was initiated by bystanders (p < 0.001). Patients presenting with asystole or pulseless electrical activity (PEA) had a higher risk of CPR failure (86%) than those with ventricular fibrillation/ventricular tachycardia (VF/VT). Patients with VF/VT had a higher chance of ROSC (OR 2.68, 1.86–3.85) than those with asystole (p < 0.001). The chance of ROSC was 1.78 times higher when the event occurred in a public place (p < 0.001). Conclusions: The factors associated with ROSC were occurrence in a public place, CPR initiation by witnesses, and presence of a shockable rhythm. Gender, age, and the type of EMT did not influence ROSC. Low bystander CPR rates reinforce the need for further efforts to train the public in CPR

    T-cell Subsets and Antifungal Host Defenses

    Get PDF
    It has been long appreciated that protective immunity against fungal pathogens is dependent on activation of cellular adaptive immune responses represented by T lymphocytes. The T-helper (Th)1/Th2 paradigm has proven to be essential for the understanding of protective adaptive host responses. Studies that have examined the significance of regulatory T cells in fungal infection, and the recent discovery of a new T-helper subset called Th17 have provided crucial information for understanding the complementary roles played by the various T-helper lymphocytes in systemic versus mucosal antifungal host defense. This review provides an overview of the role of the various T-cell subsets during fungal infections and the reciprocal regulation between the T-cell subsets contributing to the tailored host response against fungal pathogens

    A Negative Feedback Loop That Limits the Ectopic Activation of a Cell Type–Specific Sporulation Sigma Factor of Bacillus subtilis

    Get PDF
    Two highly similar RNA polymerase sigma subunits, σF and σG, govern the early and late phases of forespore-specific gene expression during spore differentiation in Bacillus subtilis. σF drives synthesis of σG but the latter only becomes active once engulfment of the forespore by the mother cell is completed, its levels rising quickly due to a positive feedback loop. The mechanisms that prevent premature or ectopic activation of σG while discriminating between σF and σG in the forespore are not fully comprehended. Here, we report that the substitution of an asparagine by a glutamic acid at position 45 of σG (N45E) strongly reduced binding by a previously characterized anti-sigma factor, CsfB (also known as Gin), in vitro, and increased the activity of σG in vivo. The N45E mutation caused the appearance of a sub-population of pre-divisional cells with strong activity of σG. CsfB is normally produced in the forespore, under σF control, but sigGN45E mutant cells also expressed csfB and did so in a σG-dependent manner, autonomously from σF. Thus, a negative feedback loop involving CsfB counteracts the positive feedback loop resulting from ectopic σG activity. N45 is invariant in the homologous position of σG orthologues, whereas its functional equivalent in σF proteins, E39, is highly conserved. While CsfB does not bind to wild-type σF, a E39N substitution in σF resulted in efficient binding of CsfB to σF. Moreover, under certain conditions, the E39N alteration strongly restrains the activity of σF in vivo, in a csfB-dependent manner, and the efficiency of sporulation. Therefore, a single amino residue, N45/E39, is sufficient for the ability of CsfB to discriminate between the two forespore-specific sigma factors in B. subtilis

    The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in Bacillus subtilis but Ensure Its Efficient Utilization

    Get PDF
    Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle

    Current concepts in clinical radiation oncology

    Get PDF
    corecore