382 research outputs found
EC873 Annual Farm Business Report : Southeast Nebraska Loess-Drift Hill Area 42 Farms Gage, Johnson, Lancaster and Pawnee Counties for 1942
Extension Circular 873 provides an annual business report of forty-two farms in the Southeast Nebraska Loess-Drift Hill Area of Gage, Johnson, Lancaster, and Pawnee Counties of Nebraska from 1942
Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research
Traumatic brain injury (TBI), caused by a sudden blow or jolt to the brain that disrupts normal function, is an emerging health epidemic with ā¼2.5 million cases occurring annually in the United States that are severe enough to cause hospitalization or death. Most common causes of TBI include contact sports, vehicle crashes and domestic violence or war injuries. Injury to the central nervous system is one of the most consistent candidates for initiating the molecular and cellular cascades that result in Alzheimerās disease (AD), Parkinsonās disease (PD) and amyotrophic lateral sclerosis (ALS). Not every TBI event is alike with effects varying from person to person. The majority of people recover from mild TBI within a short period of time, but repeated incidents can have deleterious long-lasting effects which depend on factors such as the number of TBIs sustained, time till medical attention, age, gender and genetics of the individual. Despite extensive research, many questions still remain regarding diagnosis, treatment, and prevention of long-term effects from TBI as well as recovery of brain function. In this review, we present an overview of TBI pathology, discuss mammalian models for TBI and focus on current methods using Drosophila melanogaster as a model for TBI study. The relatively small brain size (ā¼100,000 neurons and glia), conserved neurotransmitter signaling mechanisms and sophisticated genetics of Drosophila allows for cell biological, molecular and genetic analyses that are impractical in mammalian models of TBI
Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields
A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures
is presented. The nonlinear dependence of the capacitance on the gate voltage
and in-plane magnetic field is discussed together with the capacitance quantum
steps connected with a population of higher 2D gas subbands. The results of
full self-consistent numerical calculations are compared to recent experimental
data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file
available upon request. Phys. Rev.B, in pres
Effect of hydrostatic pressure on the dc characteristics of AlGaNāGaN heterojunction field effect transistors
We report the effect of compressive hydrostatic pressure on the current-voltage characteristics ofAlGaNāGaNheterojunction field effect transistors (HFETs) on a sapphire substrate. The drain current increases with hydrostatic pressure and the maximum relative increase occurs when the gate bias is near threshold and drain bias is slightly larger than saturation bias. The increase of the drain current is associated with a pressure induced shift of the threshold voltage by ā8.0mVākbar that is attributed to an increase of the polarizationcharge density at the AlGaNāGaN interface due to the piezoelectric effect. The results demonstrate the considerable potential of AlGaNāGaNHFETs for strain sensor applications
Stability Of Plasma Configurations During Compression
Magnetized Target Fusion (MTF) efforts are based on calculations showing that the addition of a closed magnetic field reduces the driver pressure and rise time requirements for inertial confinement fusion by reducing thermal conductivity. Instabilities that result in convective bulk transport at the Alphen time scale are of particular concern since they are much faster than the implosion time. Such instabilities may occur during compression due to, for example, an increase in the plasma-magnetic pressure ratio {beta} or, in the case of a rotating plasma, spin-up due to angular momentum conservation. Details depend on the magnetic field topology and compression geometry. A hard core z pinch with purely azimuthal magnetic field can theoretically be made that relaxes into a wall supported diffuse profile satisfying the Kadomtsev criterion for the stability of m = 0 modes, which is theoretically preserved during cylindrical outer wall compression. The center conductor radius and current must also be large enough to keep the {beta} below stability limits to stabilize modes with m > 0. The stability of m > 0 modes actually improves during compression. A disadvantage of this geometry, though, is plasma contact with the solid boundaries. In addition to the risk of high Z impurity contamination during the (turbulent) relaxation process, contact thereafter can cause plasma pressure near the outer surface to drop, violating the Kadomtsev criterion locally. The resultant m = 0 instability can then convect impurities inward. Also, the center conductor (which is not part of the Kadomtsev profile) can go m = 0 unstable, convecting impurities outward. One way to mitigate impurity convection is to instead use a Woltjer-Taylor minimum magnetic energy configuration (spheromak). The sheared magnetic field inhibits convection, and the need for the center conductor is eliminated. The plasma, however, would likely still have to be wall supported due to unfavorable {beta} scaling during quasispherical (3-D) compression otherwise. Use of a Field Reversed Configuration (FRC) substantially resolves the wall contact issue, but at the cost of introducing a new (rotational) instability. An FRC has an open magnetic field outside a separatrix which effectively diverts wall material. However, FRC particles diffusing across the separatrix have a preferred angular momentum, causing the FRC within to counter-rotate in response. When the FRC's rotational-diamagnetic drift frequency ratio {alpha} reaches a critical value of order unity, the FRC undergoes a rotational instability that results in rapid particle loss. The instability is exacerbated by cylindrical compression since {beta} {approx} R{sup -2/5} during this phase, assuming angular momentum conservation. A multipole magnetic field frozen into the solid liner during compression may stabilize this mode directly and/or by impeding spin-up without significantly perturbing the implosion's azimuthal symmetry
Cyclotron effective mass of 2D electron layer at GaAs/AlGaAs heterojunction subject to in-plane magnetic fields
We have found that Fermi contours of a two-dimensional electron gas at
\rmGaAs/Al_xGa_{1-x}As interface deviate from a standard circular shape under
the combined influence of an approximately triangular confining potential and
the strong in-plane magnetic field. The distortion of a Fermi contour manifests
itself through an increase of the electron effective cyclotron mass which has
been measured by the cyclotron resonance in the far-infrared transmission
spectra and by the thermal damping of Shubnikov-de Haas oscillations in tilted
magnetic fields with an in-plane component up to 5 T. The observed increase of
the cyclotron effective mass reaches almost 5 \% of its zero field value which
is in good agreement with results of a self-consistent calculation.Comment: 4 pages, Revtex, figures can be obtained on request from
[email protected]; to appear in Phys. Rev. B (in press). No changes, the
corrupted submission replace
Photoevaporation of protoplanetary discs I: hydrodynamic models
In this paper we consider the effect of the direct ionizing stellar radiation
field on the evolution of protoplanetary discs subject to photoevaporative
winds. We suggest that models which combine viscous evolution with
photoevaporation of the disc (e.g. Clarke, Gendrin & Sotomayor 2001)
incorrectly neglect the direct field after the inner disc has drained, at late
times in the evolution. We construct models of the photoevaporative wind
produced by the direct field, first using simple analytic arguments and later
using detailed numerical hydrodynamics. We find that the wind produced by the
direct field at late times is much larger than has previously been assumed, and
we show that the mass-loss rate scales as (where is the
radius of the instantaneous inner disc edge). We suggest that this result has
important consequences for theories of disc evolution, and go on to consider
the effects of this result on disc evolution in detail in a companion paper
(Alexander, Clarke & Pringle 2006b).Comment: 13 pages, 9 figures. Accepted for publication in MNRA
Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift
This paper describes a new program SnpSift for filtering differential DNA sequence variants between two or more experimental genomes after genotoxic chemical exposure. Here, we illustrate how SnpSift can be used to identify candidate phenotype-relevant variants including single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertions, and deletions (InDels) in mutant strains isolated from genome-wide chemical mutagenesis of Drosophila melanogaster. First, the genomes of two independently isolated mutant fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic chemical exposure were sequenced using the Illumina next-generation DNA sequencer to obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were processed and variants were called using standard bioinformatic tools. Next, SnpEff was used to annotate all sequence variants and their potential mutational effects on associated genes. Then, SnpSift was used to filter and select differential variants that potentially disrupt a common gene in the two allelic mutant strains. The potential causative DNA lesions were partially validated by capillary sequencing of polymerase chain reaction-amplified DNA in the genetic interval as defined by meiotic mapping and deletions that remove defined regions of the chromosome. Of the five candidate genes located in the genetic interval, the Pka-like gene CG12069 was found to carry a separate pre-mature stop codon mutation in each of the two allelic mutants whereas the other four candidate genes within the interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift can expedite the identification of candidate phenotype-causative mutations in chemically mutagenized Drosophila strains. This technique can also be used to characterize the variety of mutations generated by genotoxic chemicals
- ā¦