82 research outputs found

    Inherent limitations of probabilistic models for protein-DNA binding specificity

    Get PDF
    The specificities of transcription factors are most commonly represented with probabilistic models. These models provide a probability for each base occurring at each position within the binding site and the positions are assumed to contribute independently. The model is simple and intuitive and is the basis for many motif discovery algorithms. However, the model also has inherent limitations that prevent it from accurately representing true binding probabilities, especially for the highest affinity sites under conditions of high protein concentration. The limitations are not due to the assumption of independence between positions but rather are caused by the non-linear relationship between binding affinity and binding probability and the fact that independent normalization at each position skews the site probabilities. Generally probabilistic models are reasonably good approximations, but new high-throughput methods allow for biophysical models with increased accuracy that should be used whenever possible

    A Generalized Biophysical Model of Transcription Factor Binding Specificity and Its Application on High-Throughput SELEX Data

    Get PDF
    The interaction between transcription factors (TFs) and DNA plays an important role in gene expression regulation. In the past, experiments on protein–DNA interactions could only identify a handful of sequences that a TF binds with high affinities. In recent years, several high-throughput experimental techniques, such as high-throughput SELEX (HT-SELEX), protein-binding microarrays (PBMs) and ChIP-seq, have been developed to estimate the relative binding affinities of large numbers of DNA sequences both in vitro and in vivo. The large volume of data generated by these techniques proved to be a challenge and prompted the development of novel motif discovery algorithms. These algorithms are based on a range of TF binding models, including the widely used probabilistic model that represents binding motifs as position frequency matrices (PFMs). However, the probabilistic model has limitations and the PFMs extracted from some of the high-throughput experiments are known to be suboptimal. In this dissertation, we attempt to address these important questions and develop a generalized biophysical model and an expectation maximization (EM) algorithm for estimating position weight matrices (PWMs) and other parameters using HT-SELEX data. First, we discuss the inherent limitations of the popular probabilistic model and compare it with a biophysical model that assumes the nucleotides in a binding site contribute independently to its binding energy instead of binding probability. We use simulations to demonstrate that the biophysical model almost always provides better fits to the data and conclude that it should take the place of the probabilistic model in charactering TF binding specificity. Then we describe a generalized biophysical model, which removes the assumption of known binding locations and is particularly suitable for modeling protein–DNA interactions in HT-SELEX experiments, and BEESEM, an EM algorithm capable of estimating the binding model and binding locations simultaneously. BEESEM can also calculate the confidence intervals of the estimated parameters in the binding model, a rare but useful feature among motif discovery algorithms. By comparing BEESEM with 5 other algorithms on HT-SELEX, PBM and ChIP-seq data, we demonstrate that BEESEM provides significantly better fits to in vitro data and is similar to the other methods (with one exception) on in vivo data under the criterion of the area under the receiver operating characteristic curve (AUROC). We also discuss the limitations of the AUROC criterion, which is purely rank-based and thus misses quantitative binding information. Finally, we investigate whether adding DNA shape features can significantly improve the accuracy of binding models. We evaluate the ability of the gradient boosting classifiers generated by DNAshapedTFBS, an algorithm that takes account of DNA shape features, to differentiate ChIP-seq peaks from random background sequences, and compare them with various matrix-based binding models. The results indicate that, compared with optimized PWMs, adding DNA shape features does not produce significantly better binding models and may increase the risk of overfitting on training datasets

    Determinative developmental cell lineages are robust to cell deaths

    Get PDF
    All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Comparison of discriminative motif optimization using matrix and DNA shape-based models

    Get PDF
    Abstract Background Transcription factor (TF) binding site specificity is commonly represented by some form of matrix model in which the positions in the binding site are assumed to contribute independently to the site’s activity. The independence assumption is known to be an approximation, often a good one but sometimes poor. Alternative approaches have been developed that use k-mers (DNA “words” of length k) to account for the non-independence, and more recently DNA structural parameters have been incorporated into the models. ChIP-seq data are often used to assess the discriminatory power of motifs and to compare different models. However, to measure the improvement due to using more complex models, one must compare to optimized matrix models. Results We describe a program “Discriminative Additive Model Optimization” (DAMO) that uses positive and negative examples, as in ChIP-seq data, and finds the additive position weight matrix (PWM) that maximizes the Area Under the Receiver Operating Characteristic Curve (AUROC). We compare to a recent study where structural parameters, serving as features in a gradient boosting classifier algorithm, are shown to improve the AUROC over JASPAR position frequency matrices (PFMs). In agreement with the previous results, we find that adding structural parameters gives the largest improvement, but most of the gain can be obtained by an optimized PWM and nearly all of the gain can be obtained with a di-nucleotide extension to the PWM. Conclusion To appropriately compare different models for TF bind sites, optimized models must be used. PWMs and their extensions are good representations of binding specificity for most TFs, and more complex models, including the incorporation of DNA shape features and gradient boosting classifiers, provide only moderate improvements for a few TFs

    Additional file 3: of Comparison of discriminative motif optimization using matrix and DNA shape-based models

    No full text
    Table S3. Scores for the motif optimization algorithms on ChIP-seq data with small training sets. (DOCX 12 kb

    Additional file 4: of Comparison of discriminative motif optimization using matrix and DNA shape-based models

    No full text
    Table S4. AUPRC and AUROC differences between model pairs by TF. (XLSX 32 kb

    Additional file 1: of Comparison of discriminative motif optimization using matrix and DNA shape-based models

    No full text
    Table S1. Mean AUROC (and standard deviation) on ChIP-seq data. (DOCX 13 kb
    • …
    corecore