388 research outputs found
Constraints on the variability of quark masses from nuclear binding
Based on recent work on nuclear binding, we update and extend the anthropic
constraints on the light quark masses, with results that are more tightly
constrained than previously obtained. We find that heavy nuclei would fall
apart (because the attractive nuclear central potential becomes too weak) if
the sum of the light quark masses m_u+m_d would exceed their physical values by
64% (at 95% confidence level). We summarize the anthropic constraints that
follow from requiring the existence both of heavy atoms and of hydrogen. With
the additional assumption that the quark Yukawa couplings do not vary, these
constraints provide a remarkably tight anthropic window for the Higgs vacuum
expectation value: 0.39 < v/v_physical < 1.64.Comment: 21 pages, 7 figure
Self-similarity of rogue wave generation in gyrotrons: Beyond the Peregrine breather
Within the framework of numerical simulations, we study the gyrotron dynamics
under conditions of a significant excess of the operating current over the
starting value, when the generation of electromagnetic pulses with anomalously
large amplitudes ("rogue waves") are realized. We demonstrate that the relation
between peak power and duration of rogue waves is self-similar, but does not
reproduce the one characteristic for Peregrine breathers. Remarkably, the
discovered self-similar relation corresponds to the exponential nonlinearity of
an equivalent Schr\"odinger-like evolution equation. This interpretation can be
used as a theoretical basis for explaining the giant amplitudes of gyrotron
rogue waves
Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence
BACKGROUND: Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. PURPOSE AND PRINCIPAL FINDINGS: In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. CONCLUSIONS/SIGNIFICANCE: Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human pathogen
Chemical Composition and Antifungal Properties of Essential Oil of Origanum vulgare Linnaeus (Lamiaceae) against Sporothrix schenckii and Sporothrix brasiliensis
Purpose: To evaluate the effect of the essential oil of Origanum vulgare Linnaeus (Lamiaceae) on the growth of Sporothrix schenckii and Sporothrix brasiliensis.Methods: The chemical composition of the essential oil was investigated by gas chromatography/flame ionization detector (GC-FID). The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were determined by broth micro-dilution method. Scanning electron microscopy (SEM) was also performed to reveal morphological alterations in Sporothrix spp. cells.Results: The major components of the essential oil were Îł-terpinene (30.5%), carvacrol (15.7 %) and 4-terpineol (13.0 %). Îł-Terpinene showed potential antifungal activity with MIC ranging from 62.5 to 500.0 ÎĽg mL-1 for S. schenckii, and 125.0 to 250.0 ÎĽg mL-1 for S. brasiliensis. SEM micrographs revealed morphological alterations in hyphae and reduction of the adhered conidia numbers.Conclusion: Origanum vulgare Linnaeus essential oil possesses potential antifungal activity, and can, therefore, can be developed as an alternative agent for the treatment of sporotrichosis.Keywords: Antifungal Activity, Essential Oil, Gas Chromatography, Origanum vulgare, Sporotrichosi
Many-worlds interpretation of quantum theory and mesoscopic anthropic principle
We suggest to combine the Anthropic Principle with Many-Worlds Interpretation
of Quantum Theory. Realizing the multiplicity of worlds it provides an
opportunity of explanation of some important events which are assumed to be
extremely improbable. The Mesoscopic Anthropic Principle suggested here is
aimed to explain appearance of such events which are necessary for emergence of
Life and Mind. It is complementary to Cosmological Anthropic Principle
explaining the fine tuning of fundamental constants. We briefly discuss various
possible applications of Mesoscopic Anthropic Principle including the Solar
Eclipses and assembling of complex molecules. Besides, we address the problem
of Time's Arrow in the framework of Many-World Interpretation. We suggest the
recipe for disentangling of quantities defined by fundamental physical laws and
by an anthropic selection.Comment: 11 page
Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics
In this philosophical paper, we explore computational and biological
analogies to address the fine-tuning problem in cosmology. We first clarify
what it means for physical constants or initial conditions to be fine-tuned. We
review important distinctions such as the dimensionless and dimensional
physical constants, and the classification of constants proposed by
Levy-Leblond. Then we explore how two great analogies, computational and
biological, can give new insights into our problem. This paper includes a
preliminary study to examine the two analogies. Importantly, analogies are both
useful and fundamental cognitive tools, but can also be misused or
misinterpreted. The idea that our universe might be modelled as a computational
entity is analysed, and we discuss the distinction between physical laws and
initial conditions using algorithmic information theory. Smolin introduced the
theory of "Cosmological Natural Selection" with a biological analogy in mind.
We examine an extension of this analogy involving intelligent life. We discuss
if and how this extension could be legitimated.
Keywords: origin of the universe, fine-tuning, physical constants, initial
conditions, computational universe, biological universe, role of intelligent
life, cosmological natural selection, cosmological artificial selection,
artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres
Multicenter, International Study of MIC/ MEC Distributions for definition of epidemiological cutoff values for sporothrix species identified by molecular methods
Clinical and Laboratory Standards Institute (CLSI) conditions for testing the susceptibilities of pathogenic Sporothrix species to antifungal agents are based on a collaborative study that evaluated five clinically relevant isolates of Sporothrix schenckii sensu lato and some antifungal agents. With the advent of molecular identification, there are two basic needs: to confirm the suitability of these testing conditions for all agents and Sporothrix species and to establish species-specific epidemiologic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles, terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto, 486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates. Data were obtained in 17 independent laboratories (Australia, Europe, India, South Africa, and South and North America) using conidial inoculum suspensions and 48 to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold concentrations) allowed the proposal of the following ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin B, 4 and 4 /ml; itraconazole, 2 and 2 μg/ml; posaconazole, 2 and 2 μg/ml; and voriconazole, 64 and 32 μg/ml. Ketoconazole and terbinafine ECVs for S. brasiliensis were 2 and 0.12 μg/ml, respectively. Insufficient or unsuitable data precluded the calculation of ketoconazole and terbinafine (or any other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S. mexicana. These ECVs could aid the clinician in identifying potentially resistant isolates (non-wild type) less likely to respond to therapy.A. Espinel-Ingroff, D. P. B. Abreu, R. Almeida-Paes, R. S. N. Brilhante, A. Chakrabarti, A. Chowdhary, F. Hagen, S. Córdoba, G. M. Gonzalez, N. P. Govender, J. Guarro, E. M. Johnson, S. E. Kidd, S. A. Pereira, A. M. Rodrigues, S. Rozental, M. W. Szeszs, R. Ballesté Alaniz, A. Bonifaz, L. X. Bonfietti, L. P. Borba-Santos, J. Capilla, A. L. Colombo, M. Dolande, M. G. Isla, M. S. C. Melhem, A. C. Mesa-Arango, M. M. E. Oliveira, M. M. Panizo, Z. Pires de Camargo, R. M. Zancope-Oliveira, J. F. Meis, J. Turnidge
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
First molecular detection of Coxiella burnetii in Brazilian artisanal cheese: a neglected food safety hazard in ready-to-eat raw-milk product.
Global publications on Q fever have increased after the 2007 epidemic in the Netherlands. However, the epidemiology of Q fever/coxiellosis in Brazil is still poorly understood. Accordingly, there have been few studies investigating the presence of Coxiella burnetii in dairy products around the world, especially in Brazil, where consumption of fresh cheese made from raw-milk is very high. Objective: This study was a random survey to assess the prevalence of C. burnetii by PCR in traditional Minas artisanal cheese from the Serro microregion, Brazil, which is manufactured from bovine raw-milk. Methods: DNA extracted from 53 cheese samples were analyzed by nested PCR with C. burnetii-specific primers and the products confirmed by DNA sequencing. Results: Out of the 53 cheese samples five (9.43%) were C. burnetii DNA-positive, each coming from one of the respective randomly selected manufacturing agroindustries. Based on our results, it is estimated that 1.62 tons/day of ready-to-eat cheese made from raw-milk from a total of 16.2 tons produced daily in the study region are contaminated with C. burnetii
- …