1,017 research outputs found

    Equation of motion approach to the Hubbard model in infinite dimensions

    Full text link
    We consider the Hubbard model on the infinite-dimensional Bethe lattice and construct a systematic series of self-consistent approximations to the one-particle Green's function, G(n)(ω), n=2,3, G^{(n)}(\omega),\ n=2,3,\dots\ . The first n1n-1 equations of motion are exactly fullfilled by G(n)(ω)G^{(n)}(\omega) and the nn'th equation of motion is decoupled following a simple set of decoupling rules. G(2)(ω)G^{(2)}(\omega) corresponds to the Hubbard-III approximation. We present analytic and numerical results for the Mott-Hubbard transition at half filling for n=2,3,4n=2,3,4.Comment: 10pager, REVTEX, 8-figures not available in postscript, manuscript may be understood without figure

    Zero-temperature magnetism in the periodic Anderson model in the limit of large dimensions

    Full text link
    We study the magnetism in the periodic Anderson model in the limit of large dimensions by mapping the lattice problem into an equivalent local impurity self-consistent model. Through a recently introduced algorithm based on the exact diagonalization of an effective cluster hamiltonian, we obtain solutions with and without magnetic order in the half-filled case. We find the exact AFM-PM phase boundary which is shown to be of 2nd2^{nd} order and obeys V2Uconst.\frac{V^2}{U} \approx const. We calculate the local staggered moments and the density of states to gain insights on the behavior of the AFM state as it evolves from itinerant to a local-moment magnetic regimeComment: 9 pages + 9 figures, to appear in Phys. Rev. B, 1 Sept. 1995 issu

    Effects of degenerate orbitals on the Hubbard model

    Full text link
    Stability of a metallic state in the two-orbital Hubbard model at half-filling is investigated. We clarify how spin and orbital fluctuations are enhanced to stabilize the formation of quasi-particles by combining dynamical mean field theory with the quantum Monte Carlo simulations. These analyses shed some light on the reason why the metallic phase is particularly stable when the intra- and inter-band Coulomb interactions are nearly equal.Comment: 3 pages, To appear in JPSJ Vol. 72, No. 5 200

    Mott transition at large orbital degeneracy: dynamical mean-field theory

    Full text link
    We study analytically the Mott transition of the N-orbital Hubbard model using dynamical mean-field theory and a low-energy projection onto an effective Kondo model. It is demonstrated that the critical interaction at which the insulator appears (Uc1) and the one at which the metal becomes unstable (Uc2) have different dependence on the number of orbitals as the latter becomes large: Uc1 ~ \sqrt{N} while Uc2 ~ N. An exact analytical determination of the critical coupling Uc2/N is obtained in the large-N limit. The metallic solution close to this critical coupling has many similarities at low-energy with the results of slave boson approximations, to which a comparison is made. We also discuss how the critical temperature associated with the Mott critical endpoint depends on the number of orbitals.Comment: 13 pages. Minor changes in V

    Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems

    Full text link
    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the LISA, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard of recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V2O3V_2O_3. We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain an excellent agreement with the experimental data and present a detailed discussion on the role of magnetic frustration by studying the kk-resolved single particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce3Bi4Pt3Ce_3Bi_4Pt_3 and FeSiFeSi. The model can successfully explain the different energy scales that are associated to the thermal filling of the optical gap, which we also relate to corresponding changes in the density of states. The temperature dependence of the optical sum rule is obtained and its relevance for the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR

    The Metal-Insulator Transition in the Doubly Degenerate Hubbard Model

    Full text link
    A systematic study has been made on the metal-insulator (MI) transition of the doubly degenerate Hubbard model (DHM) in the paramagnetic ground state, by using the slave-boson mean-field theory which is equivalent to the Gutzwiller approximation (GA). For the case of infinite electron-electron interactions, we obtain the analytic solution, which becomes exact in the limit of infinite spatial dimension. On the contrary, the finite-interaction case is investigated by numerical methods with the use of the simple-cubic model with the nearest-neighbor hopping. The mass-enhancement factor, ZZ, is shown to increase divergently as one approaches the integer fillings (N=1,2,3N = 1, 2, 3), at which the MI transition takes place, NN being the total number of electrons. The calculated NN dependence of ZZ is compared with the observed specific-heat coefficient, γ\gamma, of Sr1xLaxTiO3Sr_{1-x}La_xTiO_3 which is reported to significantly increase as xx approaches unity.Comment: Latex 16 pages, 10 ps figures included, published in J. Phys. Soc. Jpn. with some minor modifications. ([email protected]

    Magnetooptical sum rules close to the Mott transition

    Full text link
    We derive new sum rules for the real and imaginary parts of the frequency-dependent Hall constant and Hall conductivity. As an example, we discuss their relevance to the doped Mott insulator that we describe within the dynamical mean-field theory of strongly correlated electron systems.Comment: 4 pages, 4 ps figures; accepted for publication in PR

    Fuzzy splicing systems

    Get PDF
    In this paper we introduce a new variant of splicing systems, called fuzzy splicing systems, and establish some basic properties of language families generated by this type of splicing systems. We study the “fuzzy effect” on splicing operations, and show that the “fuzzification” of splicing systems can increase and decrease the computational power of splicing systems with finite components with respect to fuzzy operations and cut-points chosen for threshold languages

    Dynamical Mean Field Theory of the Antiferromagnetic Metal to Antiferromagnetic Insulator Transition

    Full text link
    We study the antiferromagnetic metal to antiferromagnetic insulator using dynamical mean field theory and exact diagonalization methods. We find two qualitatively different behaviors depending on the degree of magnetic correlations. For strong correlations combined with magnetic frustration, the transition can be described in terms of a renormalized slater theory, with a continuous gap closure driven by the magnetism but strongly renormalized by correlations. For weak magnetic correlations, the transition is weakly first order.Comment: 4 pages, uses epsfig,4 figures,notational errors rectifie
    corecore