71 research outputs found
Land system science and sustainable development of the earth system: A global land project perspective
Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action
Ecological homogenization of oil Properties in the American Residential Macrosystem
The conversion of native ecosystems to residential ecosystems dominated by lawns has been a prevailing land-use change in the United States over the past 70âyears. Similar development patterns and management of residential ecosystems cause many characteristics of residential ecosystems to be more similar to each other across broad continental gradients than that of former native ecosystems. For instance, similar lawn management by irrigation and fertilizer applications has the potential to influence soil carbon (C) and nitrogen (N) pools and processes. We evaluated the mean and variability of total soil C and N stocks, potential net N mineralization and nitrification, soil nitrite (NO2â)/nitrate (NO3â) and ammonium (NH4+) pools, microbial biomass C and N content, microbial respiration, bulk density, soil pH, and moisture content in residential lawns and native ecosystems in six metropolitan areas across a broad climatic gradient in the United States: Baltimore, MD (BAL); Boston, MA (BOS); Los Angeles, CA (LAX); Miami, FL (MIA); MinneapolisâSt. Paul, MN (MSP); and Phoenix, AZ (PHX). We observed evidence of higher N cycling in lawn soils, including significant increases in soil NO2â/NO3â, microbial N pools, and potential net nitrification, and significant decreases in NH4+ pools. Self-reported yard fertilizer application in the previous year was linked with increased NO2â/ NO3â content and decreases in total soil N and C content. Self-reported irrigation in the previous year was associated with decreases in potential net mineralization and potential net nitrification and with increases in bulk density and pH. Residential topsoil had higher total soil C than native topsoil, and microbial biomass C was markedly higher in residential topsoil in the two driest cities (LAX and PHX). Coefficients of variation for most biogeochemical metrics were higher in native soils than in residential soils across all cities, suggesting that residential development homogenizes soil properties and processes at the continental scale
Ecological homogenization of urban USA
Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 12 (2014): 74-81, doi:10.1890/120374.A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multi-disciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; MinneapolisâSt Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales.We thank the MacroSystems Biology Program in the
Emerging Frontiers Division of the Biological Sciences
Directorate at NSF for support. The âEcological
Homogenization of Urban Americaâ project was supported
by a series of collaborative grants from this program
(EF-1065548, 1065737, 1065740, 1065741,
1065772, 1065785, 1065831, 121238320). The work
arose from research funded by grants from the NSF Long
Term Ecological Research Program supporting work in
Baltimore (DEB-0423476), Phoenix (BCS-1026865,
DEB-0423704 and DEB-9714833), Plum Island (Boston)
(OCE-1058747 and 1238212), Cedar Creek
(MinneapolisâSt Paul) (DEB-0620652), and Florida
Coastal Everglades (Miami) (DBI-0620409)
A Multi-City Comparison of Front and Backyard Differences in Plant Species Diversity and Nitrogen Cycling in Residential landscapes
We hypothesize that lower public visibility of residential backyards reduces householdsâ desire for social conformity, which alters residential land management and produces differences in ecological composition and function between front and backyards. Using lawn vegetation plots (7 cities) and soil cores (6 cities), we examine plant species richness and evenness and nitrogen cycling of lawns in Boston, Baltimore, Miami, Minneapolis-St. Paul, Phoenix, Los Angeles (LA), and Salt Lake City (SLC). Seven soil nitrogen measures were compared because different irrigation and fertilization practices may vary between front and backyards, which may alter nitrogen cycling in soils. In addition to lawn-only measurements, we collected and analyzed plant species richness for entire yardsâcultivated (intentionally planted) and spontaneous (self-regenerating)âfor front and backyards in just two cities: LA and SLC. Lawn plant species and soils were not different between front and backyards in our multi-city comparisons. However, entire-yard plant analyses in LA and SLC revealed that frontyards had significantly fewer species than backyards for both cultivated and spontaneous species. These results suggest that there is a need for a more rich and social-ecologically nuanced understanding of potential residential, household behaviors and their ecological consequences
Homogenization of Plant Diversity, Composition, and Structure in North American Urban Yards
Urban ecosystems are widely hypothesized to be more ecologically homogeneous than natural ecosystems. We argue that urban plant communities assemble from a complex mix of horticultural and regional species pools, and evaluate the homogenization hypothesis by comparing cultivated and spontaneously occurring urban vegetation to natural area vegetation across seven major U.S. cities. There was limited support for homogenization of urban diversity, as the cultivated and spontaneous yard flora had greater numbers of species than natural areas, and cultivated phylogenetic diversity was also greater. However, urban yards showed evidence of homogenization of composition and structure. Yards were compositionally more similar across regions than were natural areas, and tree density was less variable in yards than in comparable natural areas. This homogenization of biodiversity likely reflects similar horticultural source pools, homeowner preferences, and management practices across U.S. cities
Continental-scale homogenization of residential lawn plant communities
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Landscape and Urban Planning 165 (2017): 54-63, doi:10.1016/j.landurbplan.2017.05.004.Residential lawns are highly managed ecosystems that occur in urbanized landscapes across the United States. Because they are ubiquitous, lawns are good systems in which to study the potential homogenizing effects of urban land use and management together with the continental-scale effects of climate on ecosystem structure and functioning. We hypothesized that similar homeowner preferences and management in residential areas across the United States would lead to low plant species diversity in lawns and relatively homogeneous vegetation across broad geographical regions. We also hypothesized that lawn plant species richness would increase with regional temperature and precipitation due to the presence of spontaneous, weedy vegetation, but would decrease with household income and fertilizer use. To test these predictions, we compared plant species composition and richness in residential lawns in seven U.S. metropolitan regions. We also compared species composition in lawns with understory vegetation in minimally-managed reference areas in each city. As expected, the composition of cultivated turfgrasses was more similar among lawns than among reference areas, but this pattern also held among spontaneous species. Plant species richness and diversity varied more among lawns than among reference areas, and more diverse lawns occurred in metropolitan areas with higher precipitation. Native forb diversity increased with precipitation and decreased with income, driving overall lawn diversity trends with these predictors as well. Our results showed that both management and regional climate shaped lawn species composition, but the overall homogeneity of species regardless of regional context strongly suggested that management was a more important driver.This research was supported by the Macrosystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at the National Science Foundation (NSF) under grants EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, and 121238320
Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities.
Author Posting. © Ecological Society of America, 2019. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Trammell, T. L. E., Pataki, D. E., Still, C. J., Ehleringer, J. R., Avolio, M. L., Bettez, N., Cavender-Bares, J., Groffman, P. M., Grove, M., Hall, S. J., Heffernan, J., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K. C., O'Neil-Dunne, J., Pearse, W. D., Chowdhury, R. R., Steele, M., & Wheeler, M. M. Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 29(4), (2019): e01884, doi: 10.1002/eap.1884.In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (ÎŽ13C, index of C3/C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant ÎŽ13C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3/C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3/C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.This research was funded by a series of collaborative grants from the U.S. National Science Foundation Macrosystems Biology Program (EFâ1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The authors thank La'Shaye Ervin, William Borrowman, Moumita Kundu, and Barbara Uhl for field and laboratory assistance
Climate and Lawn Management Interact to Control C\u3csub\u3e4\u3c/sub\u3e Plant Distribution in Residential Lawns Across Seven U.S. Cities
In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (ÎŽ13C, index of C3/C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant ÎŽ13C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3/C4competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3/C4plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities
The global assessment report on biodiversity and ecosystem services: Summary for policy makers
This report represents a critical assessment, the first in almost 15 years (since the release of the Millennium Ecosystem Assessment in 2005) and the first ever carried out by an intergovernmental body, of the status and trends of the natural world, the social implications of these trends, their direct and indirect causes, and, importantly, the actions that can still be taken to ensure a better future for all. These complex links have been assessed using a simple, yet very inclusive framework that should resonate with a wide range of stakeholders, since it recognizes diverse world views, values and knowledge systems.Fil: DĂaz, Sandra Myrna. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; ArgentinaFil: Settele, Josef. Helmholtz Centre for Environmental Research; AlemaniaFil: BrondĂzio, Eduardo. Indiana University; Estados UnidosFil: Ngo, Hien. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; AlemaniaFil: GuĂšze, Maximilien. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; AlemaniaFil: Agard, John. University of The West Indies; Trinidad y TobagoFil: Arneth, Almut. Karlsruher Institut fur Technologie; AlemaniaFil: Balvanera, Patricia. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Brauman, Kate. University of Minnesota; Estados UnidosFil: Butchart, Stuart. University of Cambridge; Reino UnidoFil: Chan, Kai M. A.. University of British Columbia; CanadĂĄFil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural.; ArgentinaFil: Ichii, Kazuhito. Chiba University; JapĂłnFil: Liu, Jianguo. Michigan State University; Estados UnidosFil: Subramanian, Suneetha. United Nations University; JapĂłnFil: Midgley, Guy. Stellenbosch University; SudĂĄfricaFil: Miloslavich, Patricia. Universidad Simon Bolivar.; VenezuelaFil: MolnĂĄr, Zsolt. Hungarian Academy of Sciences; HungrĂaFil: Obura, David. Coastal Oceans Research and Development Indian Ocean; KeniaFil: Pfaff, Alexander. University of Duke; Estados UnidosFil: Polasky, Stephen. University of Minnesota; Estados UnidosFil: Purvis, Andy. Natural History Museum; Reino UnidoFil: Razzaque, Jona. University of the West of England; Reino UnidoFil: Reyers, Belinda. Stellenbosch University; SudĂĄfricaFil: Roy Chowdhury, Rinku. Clark University; Estados UnidosFil: Shin, Yunne-Jai. Centre National de la Recherche Scientifique; FranciaFil: Visseren-Hamakers, Ingrid. Radboud Universiteit Nijmegen; PaĂses BajosFil: Willis, Katherine. University of Oxford; Reino UnidoFil: Zayas, Cynthia. University of the Philippines; Filipina
Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
Fil: DĂaz, Sandra. Universidad Nacional de CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal; Argentina.Fil: DĂaz, Sandra. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto Multidisciplinario de BiologĂa Vegetal; Argentina.Fil: Settele, Josef. Helmholtz-Zentrum fĂŒr Umweltforschung. Department of Community Ecology; Alemania.Fil: BrondĂzio, Eduardo. Indiana University Bloomington. Department of Anthropology; Estados Unidos.Fil: Ngo, Hien T. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Alemania.Fil: GuĂšze, Maximilien. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Alemania.Fil: Agard, John. University of the West Indies. Department of Life Sciences; Trinidad y Tobago.Fil: Arneth, Almut. Karlsruhe Institute of Technology. Institute of Meteorology and Climate Research. Atmospheric Environmental Research; Alemania.Fil: Balvanera, Patricia. Universidad Nacional AutĂłnoma de MĂ©xico. Instituto de Investigaciones en Ecosistemas y Sustentabilidad; MĂ©xico.Fil: Brauman, Kate A. University of Minnesota. Institute on the Environment; Estados Unidos.Fil: Butchart, Stuart H. M. BirdLife International; Reino Unido.Fil: Chan, Kai. University of British Columbia. Institute for Resources, Environment and Sustainability; Canada.Fil: Garibaldi, Lucas Alejandro. Universidad Nacional de RĂo Negro. Instituto de Investigaciones en Recursos Naturales, AgroecologĂa y Desarrollo Rural; Argentina.Fil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones en Recursos Naturales, AgroecologĂa y Desarrollo Rural; Argentina.Fil: Ichii, Kazuhito. National Institute for Environmental Studies. Center for Global Environmental Research; JapĂłn.Fil: Liu, Jianguo. Michigan State University. Center for Systems Integration and Sustainability; Estados Unidos.Fil: Mazhenchery Subramanian, Suneetha. United Nations University. Institute of Advanced Studies; JapĂłn.Fil: Midgley, Guy. Stellenbosch University. Department of Botany and Zoology; SudĂĄfrica.Fil: Miloslavich, Patricia. Commonwealth Scientific and Industrial Research Organisation. Oceans and Atmosphere; Australia.Fil: MolnĂĄr, Zsolt. Hungarian Academy of Sciences. Traditional Ecological Knowledge Research Group; HungrĂa.Fil: Obura, David. Coastal Oceans Research and Development â Indian Ocean; Kenya.Fil: Pfaff, Alexander. Duke University; Estados Unidos.Fil: Polasky, Stephen. University of Minnesota. Department of Applied Economics; Estados Unidos.Fil: Purvis, Andy. Natural History Museum. Department of Life Sciences; Reino Unido.Fil: Razzaque, Jona. University of the West of England. Faculty of Business and Law. Department of Law; Reino Unido.Fil: Reyers, Belinda. Stellenbosch University. Department of Conservation Ecology; SudĂĄfrica.Fil: Roy Chowdhury, Rinku. Clark University. Graduate School of Geography; Estados Unidos.Fil: Shin, Yunne J. Institute of Research for Development, SĂšte & Montpellier; Francia.Fil: Visseren Hamakers, Ingrid. George Mason University. Department of Environmental Science and Policy; Estados Unidos.Fil: Willis, Katherine. University of Oxford. Department of Zoology; Reino Unido.Fil: Zayas, Cynthia N. University of the Philippines. Center for International Studies; Filipinas.Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
- âŠ