90 research outputs found
Resonant production of the sterile neutrino dark matter and fine-tunings in the [nu]MSM
The generation of lepton asymmetry below the electroweak scale has a
considerable impact on production of dark matter sterile neutrinos.
Oscillations or decays of the heavier sterile neutrinos in the neutrino minimal
standard model can give rise to the requisite lepton asymmetry, provided the
masses of the heavier neutrinos are sufficiently degenerate. We study the
renormalization group evolution of the mass difference of these singlet
fermions to understand the degree of necessary fine-tuning. We construct an
example of the model that can lead to a technically natural realization of this
low-energy degeneracy.Comment: 8 pages, 5 figure
Soliton Confinement in a Quantum Circuit
Confinement of topological excitations into particle-like states - typically
associated with theories of elementary particles - are known to occur in
condensed matter systems, arising as domain-wall confinement in quantum spin
chains. However, investigation of confinement in the condensed matter setting
has rarely ventured beyond lattice spin systems. Here, we analyze the
confinement of sine-Gordon solitons into mesonic bound states in a
one-dimensional, quantum electronic circuit~(QEC) array, constructed using
experimentally-demonstrated circuit elements: Josephson junctions, capacitors
and qubits. The interactions occurring naturally in the QEC array, due
to tunneling of Cooper-pairs and pairs of Cooper-pairs, give rise to a
non-integrable, interacting, lattice model of quantum rotors. In the scaling
limit, the latter is described by the quantum sine-Gordon model, perturbed by a
cosine potential with a different periodicity. We compute the string tension of
confinement of sine-Gordon solitons and the changes in the low-lying spectrum
in the perturbed model. The scaling limit is reached faster for the QEC array
compared to conventional spin chain regularizations, allowing high-precision
numerical investigation of the strong-coupling regime of this non-integrable
quantum field theory. Our results, obtained using the density matrix
renormalization group method, could be verified in a quench experiment using
state-of-the-art QEC technologies.Comment: 6 + 10 page
Regulation of MYC Expression and Differential JQ1 Sensitivity in Cancer Cells
High level MYC expression is associated with almost all human cancers. JQ1, a chemical compound that inhibits MYC expression is therapeutically effective in preclinical animal models in midline carcinoma, and Burkitt’s lymphoma (BL). Here we show that JQ1 does not inhibit MYC expression to a similar extent in all tumor cells. The BL cells showed a ∼90% decrease in MYC transcription upon treatment with JQ1, however, no corresponding reduction was seen in several non-BL cells. Molecularly, these differences appear due to requirements of Brd4, the most active version of the Positive Transcription Elongation Factor B (P-TEFb) within the Super Elongation Complex (SEC), and transcription factors such as Gdown1, and MED26 and also other unknown cell specific factors. Our study demonstrates that the regulation of high levels of MYC expression in different cancer cells is driven by unique regulatory mechanisms and that such exclusive regulatory signatures in each cancer cells could be employed for targeted therapeutics
Transcription factor TFII-I fine tunes innate properties of B lymphocytes
The ubiquitously expressed transcription factor TFII-I is a multifunctional protein with pleiotropic roles in gene regulation. TFII-I associated polymorphisms are implicated in Sjögren’s syndrome and Lupus in humans and, germline deletion of the Gtf2i gene in mice leads to embryonic lethality. Here we report a unique role for TFII-I in homeostasis of innate properties of B lymphocytes. Loss of Gtf2i in murine B lineage cells leads to an alteration in transcriptome, chromatin landscape and associated transcription factor binding sites, which exhibits myeloid-like features and coincides with enhanced sensitivity to LPS induced gene expression. TFII-I deficient B cells also show increased switching to IgG3, a phenotype associated with inflammation. These results demonstrate a role for TFII-I in maintaining immune homeostasis and provide clues for GTF2I polymorphisms associated with B cell dominated autoimmune diseases in humans
Recommended from our members
Divergence of transcriptional landscape occurs early in B cell activation
Background: Signaling via B cell receptor (BCR) and Toll-like receptors (TLRs) results in activation of B cells with distinct physiological outcomes, but transcriptional regulatory mechanisms that drive activation and distinguish these pathways remain unknown. Results: Two hours after ligand exposure RNA-seq, ChIP-seq and computational methods reveal that BCR- or TLR-mediated activation of primary resting B cells proceeds via a large set of shared and a smaller subset of distinct signal-selective transcriptional responses. BCR stimulation resulted in increased global recruitment of RNA Pol II to promoters that appear to transit slowly to downstream regions. Conversely, lipopolysaccharide (LPS) stimulation involved an enhanced RNA Pol II transition from initiating to elongating mode accompanied by greater H3K4me3 activation markings compared to BCR stimulation. These rapidly diverging transcriptomic landscapes also show distinct repressing (H3K27me3) histone signatures, mutually exclusive transcription factor binding in promoters, and unique miRNA profiles. Conclusions: Upon examination of genome-wide transcription and regulatory elements, we conclude that the B cell commitment to different activation states occurs much earlier than previously thought and involves a multi-faceted receptor-specific transcriptional landscape. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0012-x) contains supplementary material, which is available to authorized users
A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo
BACKGROUND: In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone) glycinate (CuNG) has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different doses. The objective of the present work was to decipher the effect of CuNG on reactive oxygen species (ROS) generation and antioxidant enzymes in normal and doxorubicin-resistant Ehrlich ascites carcinoma (EAC/Dox)-bearing Swiss albino mice. METHODS: The effect of CuNG has been studied on ROS generation, multidrug resistance-associated protein1 (MRP1) expression and on activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). RESULTS: CuNG increased ROS generation and reduced MRP1 expression in EAC/Dox cells while only temporarily depleted glutathione (GSH) within 2 h in heart, kidney, liver and lung of EAC/Dox bearing mice, which were restored within 24 h. The level of liver Cu was observed to be inversely proportional to the level of GSH. Moreover, CuNG modulated SOD, CAT and GPx in different organs and thereby reduced oxidative stress. Thus nontoxic dose of CuNG may be utilized to reduce MRP1 expression and thus sensitize EAC/Dox cells to standard chemotherapy. Moreover, CuNG modulated SOD, CAT and and GPx activities to reduce oxidative stress in some vital organs of EAC/Dox bearing mice. CuNG treatment also helped to recover liver and renal function in EAC/Dox bearing mice. CONCLUSION: Based on our studies, we conclude that CuNG may be a promising candidate to sensitize drug resistant cancers in the clinic
High rate of subclinical chikungunya virus infection and association of neutralizing antibody with protection in a prospective cohort in the Philippines.
BACKGROUND: Chikungunya virus (CHIKV) is a globally re-emerging arbovirus for which previous studies have indicated the majority of infections result in symptomatic febrile illness. We sought to characterize the proportion of subclinical and symptomatic CHIKV infections in a prospective cohort study in a country with known CHIKV circulation. METHODS/FINDINGS: A prospective longitudinal cohort of subjects ≥6 months old underwent community-based active surveillance for acute febrile illness in Cebu City, Philippines from 2012-13. Subjects with fever history were clinically evaluated at acute, 2, 5, and 8 day visits, and at a 3-week convalescent visit. Blood was collected at the acute and 3-week convalescent visits. Symptomatic CHIKV infections were identified by positive CHIKV PCR in acute blood samples and/or CHIKV IgM/IgG ELISA seroconversion in paired acute/convalescent samples. Enrollment and 12-month blood samples underwent plaque reduction neutralization test (PRNT) using CHIKV attenuated strain 181/clone25. Subclinical CHIKV infections were identified by ≥8-fold rise from a baseline enrollment PRNT titer 50 years old. Baseline CHIKV PRNT titer ≥10 was associated with 100% (95%CI: 46.1, 100.0) protection from symptomatic CHIKV infection. Phylogenetic analysis demonstrated Asian genotype closely related to strains from Asia and the Caribbean. CONCLUSIONS: Subclinical infections accounted for a majority of total CHIKV infections. A positive baseline CHIKV PRNT titer was associated with protection from symptomatic CHIKV infection. These findings have implications for assessing disease burden, understanding virus transmission, and supporting vaccine development
Recommended from our members
The human body at cellular resolution: the NIH Human Biomolecular Atlas Program
Abstract: Transformative technologies are enabling the construction of three-dimensional maps of tissues with unprecedented spatial and molecular resolution. Over the next seven years, the NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) intends to develop a widely accessible framework for comprehensively mapping the human body at single-cell resolution by supporting technology development, data acquisition, and detailed spatial mapping. HuBMAP will integrate its efforts with other funding agencies, programs, consortia, and the biomedical research community at large towards the shared vision of a comprehensive, accessible three-dimensional molecular and cellular atlas of the human body, in health and under various disease conditions
- …