9 research outputs found
Sensitivity of mangrove range limits to climate variability
Aim: Correlative distribution models have been used to identify potential climatic controls of mangrove range limits, but there is still uncertainty about the relative importance of these factors across different regions. To provide insights into the strength of climatic control of different mangrove range limits, we tested whether temporal variability in mangrove abundance increases near range limits and whether this variability is correlated with climatic factors thought to control large scale mangrove distributions.
Location: North and South America.
Time period: 1984â2011.
Major taxa studied: Avicennia germinans, Avicennia schuaeriana, Rhizophora mangle, Laguncularia racemosa.
Methods: We characterized temporal variability in the enhanced vegetation index (EVI) at mangrove range limits using Landsat satellite imagery collected between 1984â2011. We characterized greening trends at each range limit, examined variability in EVI along latitudinal gradients near each range limit, and assessed correlations between changes in EVI and temperature and precipitation.
Results: Spatial variability in mean EVI was generally correlated with temperature and precipitation, but the relationships were region specific. Greening trends were most pronounced at range limits in eastern North America. In these regions variability in EVI increased toward the range limit and was sensitive to climatic factors. In contrast, EVI at range limits on the Pacific coast of North America and both coasts of South America was relatively stable and less sensitive to climatic variability.
Main conclusions: Our results suggest that range limits in eastern North America are strongly controlled by climate factors. Mangrove expansion in response to future warming is expected to be rapid in regions that are highly sensitive to climate variability (e.g. eastern North America), but the response in other range limits (e.g. South America) is likely to be more complex and modulated by additional factors such as dispersal limitation, habitat constraints, and/or changing climatic means rather than just extremes
Sensitivity of mangrove range limits to climate variability
Aim: Correlative distribution models have been used to identify potential climatic controls of mangrove range limits, but there is still uncertainty about the relative importance of these factors across different regions. To provide insights into the strength of climatic control of different mangrove range limits, we tested whether temporal variability in mangrove abundance increases near range limits and whether this variability is correlated with climatic factors thought to control large scale mangrove distributions.
Location: North and South America.
Time period: 1984â2011.
Major taxa studied: Avicennia germinans, Avicennia schuaeriana, Rhizophora mangle, Laguncularia racemosa.
Methods: We characterized temporal variability in the enhanced vegetation index (EVI) at mangrove range limits using Landsat satellite imagery collected between 1984â2011. We characterized greening trends at each range limit, examined variability in EVI along latitudinal gradients near each range limit, and assessed correlations between changes in EVI and temperature and precipitation.
Results: Spatial variability in mean EVI was generally correlated with temperature and precipitation, but the relationships were region specific. Greening trends were most pronounced at range limits in eastern North America. In these regions variability in EVI increased toward the range limit and was sensitive to climatic factors. In contrast, EVI at range limits on the Pacific coast of North America and both coasts of South America was relatively stable and less sensitive to climatic variability.
Main conclusions: Our results suggest that range limits in eastern North America are strongly controlled by climate factors. Mangrove expansion in response to future warming is expected to be rapid in regions that are highly sensitive to climate variability (e.g. eastern North America), but the response in other range limits (e.g. South America) is likely to be more complex and modulated by additional factors such as dispersal limitation, habitat constraints, and/or changing climatic means rather than just extremes
Net evaporation-induced mangrove area loss across low-lying Caribbean islands
Although mangroves provide many beneficial ecosystem services, such as blue carbon storage and coastal protection, they are currently under threat due to changes in climate conditions, such as prolonged drought exposure. Under drought conditions, evaporation exceeds precipitation and high soil salinities can lead to stunted growth and die-back. To quantify this interplay, we developed a database for low-lying and uninhabited mangrove islands in the Caribbean under various evaporation and precipitation regimes. We extracted physical and biological information from each island using remote sensing techniques and coupled it with a process-based model. We used this database to develop a model that explains both the spatial variability in vegetated area across the Caribbeanâas a function of rates of evaporation and precipitationâand porewater salinity concentration and dispersion from island edge towards the interior of mangrove islands. We then used this validated model to predict mangrove area loss associated with increases in evaporation to precipitation rates by 2100 for different Shared Socioeconomic Pathways (SSP). Less wealthy Caribbean regions such as Belize, Puerto Rico, and Venezuela are disproportionally affected, with mangrove area losses ranging from 3%â7% for SSP 2.6 and 13%â21% for SSP 7.0. Furthermore, foregone carbon sequestration in lost biomass under SSP 4.5 and 7.0 scenarios could compromise the ability of low-lying Caribbean mangrove islands to vertically adjust to sea level rise
Global controls on carbon storage in mangrove soils
Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50âyears. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200âMgâhaâ1) in carbonate settings and overestimated by up to 86% (around 400âMgâhaâ1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories
Four decades of data indicate that planted mangroves stored up to 75% of the carbon stocks found in intact mature stands
Mangrovesâ ability to store carbon (C) has long been recognized, but little is known about whether planted man- groves can store C as efficiently as naturally established (i.e., intact) stands and in which time frame. Through Bayesian logistic models compiled from 40 years of data and built from 684 planted mangrove stands worldwide, we found that biomass C stock culminated at 71 to 73% to that of intact stands ~20 years after planting. Further- more, prioritizing mixed-species planting including Rhizophora spp. would maximize C accumulation within the biomass compared to monospecific planting. Despite a 25% increase in the first 5 years following planting, no notable change was observed in the soil C stocks thereafter, which remains at a constant value of 75% to that of intact soil C stock, suggesting that planting effectively prevents further C losses due to land use change. These results have strong implications for mangrove restoration planning and serve as a baseline for future C buildup assessments
Recommended from our members
Four decades of data indicate that planted mangroves stored up to 75% of the carbon stocks found in intact mature stands.
Mangroves' ability to store carbon (C) has long been recognized, but little is known about whether planted mangroves can store C as efficiently as naturally established (i.e., intact) stands and in which time frame. Through Bayesian logistic models compiled from 40 years of data and built from 684 planted mangrove stands worldwide, we found that biomass C stock culminated at 71 to 73% to that of intact stands ~20 years after planting. Furthermore, prioritizing mixed-species planting including Rhizophora spp. would maximize C accumulation within the biomass compared to monospecific planting. Despite a 25% increase in the first 5 years following planting, no notable change was observed in the soil C stocks thereafter, which remains at a constant value of 75% to that of intact soil C stock, suggesting that planting effectively prevents further C losses due to land use change. These results have strong implications for mangrove restoration planning and serve as a baseline for future C buildup assessments