1,683 research outputs found

    The composing process of technical writers: A preliminary study

    Get PDF
    The assumption that technical writers compose as do other writers is tested. The literature on the composing process, not limited to the pure or applied sciences, was reviewed, yielding three areas of general agreement. The composing process (1) consists of several stages, (2) is reflexive, and (3) may be mastered by means of strategies. Data on the ways technical writers compose were collected, and findings were related to the three areas of agreement. Questionnaires and interviews surveying 70 writers were used. The disciplines represented by these writers included civil, chemical, agricultural, geological, mechanical, electrical, and petroleum engineering, chemistry, hydrology, geology, and biology. Those providing consulting services, or performing research. No technical editors or professional writers were surveyed, only technicians, engineers, and researchers whose jobs involved composing reports. Three pedagogical implications are included

    Modelling a suspended nanotube oscillator

    Full text link
    We present a general study of oscillations in suspended one-dimensional elastic systems clamped at each end, exploring a wide range of slack (excess length) and downward external forces. Our results apply directly to recent experiments in nanotube and silicon nanowire oscillators. We find the behavior to simplify in three well-defined regimes which we present in a dimensionless phase diagram. The frequencies of vibration of such systems are found to be extremely sensitive to slack.Comment: 4 pages, 6 figure

    Ab initio mechanical response: internal friction and structure of divacancies in silicon

    Full text link
    This letter introduces ab initio study of the full activation-volume tensor of crystalline defects as a means to make contact with mechanical response experiments. We present a theoretical framework for prediction of the internal friction associated with divacancy defects and give the first ab initio value for this quantity in silicon. Finally, making connection with defect alignment studies, we give the first unambiguous resolution of the debate surrounding ab initio verification of the ground-state structure of the defect.Comment: 5 pages, 2 figures, submitted to PR
    corecore