581 research outputs found

    California Narcotic Rehabilitation: De Facto Prison for Addicts

    Get PDF
    This note discusses the history and status of California\u27s statutory plans for coping with the narcotic addiction problem

    Dopamine increases risky choice while D2 blockade shortens decision time

    Get PDF
    Dopamine is crucially involved in decision-making and overstimulation within dopaminergic pathways can lead to impulsive behaviour, including a desire to take risks and reduced deliberation before acting. These behavioural changes are side effects of treatment with dopaminergic drugs in Parkinson disease, but their likelihood of occurrence is difficult to predict and may be influenced by the individual’s baseline endogenous dopamine state, and indeed correlate with sensation-seeking personality traits. We here collected data on a standard gambling task in healthy volunteers given either placebo, 2.5 mg of the dopamine antagonist haloperidol or 100/25 mg of the dopamine precursor levodopa in a within-subject design. We found an increase in risky choices on levodopa. Choices were, however, made faster on haloperidol with no effect of levodopa on deliberation time. Shortened deliberation times on haloperidol occurred in low sensation-seekers only, suggesting a correlation between sensation-seeking personality trait and baseline dopamine levels. We hypothesise that levodopa increases risk-taking behaviour via overstimulation at both D1 and D2 receptor level, while a single low dose of haloperidol, as previously reported (Frank and O’Reilly 2006), may block D2 receptors pre- and post-synaptically and may paradoxically lead to higher striatal dopamine acting on remaining striatal D1 receptors, causing speedier decision without influencing risk tolerance. These effects could also fit with a recently proposed computational model of the basal ganglia (Moeller and Bogacz 2019; Moeller et al. 2021). Furthermore, our data suggest that the actual dopaminergic drug effect may be dependent on the individual’s baseline dopamine state, which may influence our therapeutic decision as clinicians in the future

    SICI during changing brain states: Differences in methodology can lead to different conclusions

    Get PDF
    Background Short-latency intracortical inhibition (SICI) is extensively used to probe GABAergic inhibitory mechanisms in M1. Task-related changes in SICI are presumed to reflect changes in the central excitability of GABAergic pathways. Usually, the level of SICI is evaluated using a single intensity of conditioning stimulus so that inhibition can be compared in different brain states. Objective Here, we show that this approach may sometimes be inadequate since distinct conclusions can be drawn if a different CS intensity is used. Methods We measured SICI using a range of CS intensities at rest and during a warned simple reaction time task. Conclusions Our results show that SICI changes that occurred during the task could be either larger or smaller than at rest depending on the intensity of the CS. These findings indicate that careful interpretation of results are needed when a single intensity of CS is used to measure task-related physiological changes

    Movement speed is biased by prior experience

    Get PDF
    © 2013 The American Physiological Society. This is an Open Access article licensed under the Creative Commons Attribution license CC BY 3.0 https://creativecommons.org/licenses/by/3.0/deed.en_US which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.How does the motor system choose the speed for any given movement? Many current models assume a process that finds the optimal balance between the costs of moving fast and the rewards of achieving the goal. Here, we show that such models also need to take into account a prior representation of preferred movement speed, which can be changed by prolonged practice. In a time-constrained reaching task, human participants made 25-cm reaching movements within 300, 500, 700, or 900 ms. They were then trained for 3 days to execute the movement at either the slowest (900-ms) or fastest (300-ms) speed. When retested on the 4th day, movements executed under all four time constraints were biased toward the speed of the trained movement. In addition, trial-to-trial variation in speed of the trained movement was significantly reduced. These findings are indicative of a use-dependent mechanism that biases the selection of speed. Reduced speed variability was also associated with reduced errors in movement amplitude for the fast training group, which generalized nearly fully to a new movement direction. In contrast, changes in perpendicular error were specific to the trained direction. In sum, our results suggest the existence of a relatively stable but modifiable prior of preferred movement speed that influences the choice of movement speed under a range of task constraints.Peer reviewedFinal Published versio

    Cerebellar Transcranial Magnetic Stimulation: The Role of Coil Type from Distinct Manufacturers

    Get PDF
    Background Stimulating the cerebellum with transcranial magnetic stimulation is often perceived as uncomfortable. No study has systematically tested which coil design can effectively trigger a cerebellar response with the least discomfort. Objective To determine the relationship between perceived discomfort and effectiveness of cerebellar stimulation using different coils: MagStim (70 mm, 110 mm-coated, 110-uncoated), MagVenture and Deymed. Methods Using the cerebellar-brain inhibition (CBI) protocol, we conducted a CBI recruitment curve with respect to each participant’s maximum tolerated-stimulus intensity (MTI) to assess how effective each coil was at activating the cerebellum. Results Only the Deymed double-cone coil elicited CBI at low intensities (−20% MTI). At the MTI, the MagStim (110 mm coated/uncoated) and Deymed coils produced reliable CBI, whereas no CBI was found with the MagVenture coil. Conclusions: The Deymed double-cone coil was most effective at cerebellar stimulation at tolerable intensities. These results can guide coil selection and stimulation parameters when designing cerebellar TMS studies

    Is it possible to compare inhibitory and excitatory intracortical circuits in face and hand primary motor cortex?

    Get PDF
    Face muscles are important in a variety of different functions, such as feeding, speech and communication of non-verbal affective states, which require quite different patterns of activity from those of a typical hand muscle. We ask whether there are differences in their neurophysiological control that might reflect this. Fifteen healthy individuals were studied. Standard single- and paired-pulse transcranial magnetic stimulation (TMS) methods were used to compare intracortical inhibitory (short interval intracortical inhibition (SICI); cortical silent period (CSP)) and excitatory circuitries (short interval intracortical facilitation (SICF)) in two typical muscles, the depressor anguli oris (DAO), a face muscle, and the first dorsal interosseous (FDI), a hand muscle. TMS threshold was higher in DAO than in FDI. Over a range of intensities, resting SICF was not different between DAO and FDI, while during muscle activation SICF was stronger in FDI than in DAO (P = 0.012). At rest, SICI was stronger in FDI than in DAO (P = 0.038) but during muscle contraction, SICI was weaker in FDI than in DAO (P = 0.034). We argue that although many of the difference in response to the TMS protocols could result from the difference in thresholds, some, such as the reduction of resting SICI in DAO, may reflect fundamental differences in the physiology of the two muscle groups

    Reward and punishment enhance motor adaptation in stroke

    Get PDF
    Background and objective: The effects of motor learning, such as motor adaptation, in stroke rehabilitation are often transient, thus mandating approaches that enhance the amount of learning and retention. Previously, we showed in young individuals that reward and punishment feedback have dissociable effects on motor adaptation, with punishment improving adaptation and reward enhancing retention. If these findings were able to generalise to patients with stroke, they would provide a way to optimise motor learning in these patients. Therefore, we tested this in 45 patients with chronic stroke allocated in three groups. / Methods: Patients performed reaching movements with their paretic arm with a robotic manipulandum. After training (day 1), day 2 involved adaptation to a novel force field. During the adaptation phase, patients received performance-based feedback according to the group they were allocated: reward, punishment or no feedback (neutral). On day 3, patients readapted to the force field but all groups now received neutral feedback. / Results: All patients adapted, with reward and punishment groups displaying greater adaptation and readaptation than the neutral group, irrespective of demographic, cognitive or functional differences. Remarkably, the reward and punishment groups adapted to similar degree as healthy controls. Finally, the reward group showed greater retention. / Conclusions: This study provides, for the first time, evidence that reward and punishment can enhance motor adaptation in patients with stroke. Further research on reinforcement-based motor learning regimes is warranted to translate these promising results into clinical practice and improve motor rehabilitation outcomes in patients with stroke

    Rethinking the neurophysiological concept of cortical myoclonus

    Get PDF
    Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus

    Rethinking the neurophysiological concept of cortical myoclonus

    Get PDF
    Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus
    • …
    corecore