12 research outputs found
To Protect Fatty Livers from Ischemia Reperfusion Injury: Role of Ischemic Postconditioning
BACKGROUND The benefit of ischemic postconditioning (IPostC) might be the throttled inflow following cold ischemia. The current study investigated advantage and mechanisms of IPostC in healthy and fatty rat livers.
METHODS Male SD rats received a high-fat diet to induce fatty livers. Isolated liver perfusion was performed after 24 h ischemia at 4°C as well as in vivo experiments after 90 min warm ischemia. The so-called follow-up perfusions served to investigate the hypothesis that medium from IPostC experiments is less harmful. Lactate dehydrogenase (LDH), transaminases, different cytokines, and gene expressions, respectively, were measured.
RESULTS Fatty livers showed histologically mild inflammation and moderate to severe fat storage. IPostC reduced LDH and TXB2 in healthy and fatty livers and increased bile flow. LDH, TNF-\textgreeka, and IL-6 levels in serum decreased after warm ischemia + IPostC. The gene expressions of Tnf, IL-6, Ccl2, and Ripk3 were downregulated in vivo after IPostC. CONCLUSIONS IPostC showed protective effects after ischemia in situ and in vivo in healthy and fatty livers. Restricted cyclic inflow was an important mechanism and further suggested involvement of necroptosis. IPostC represents a promising and easy intervention to improve outcomes after transplantation
Interleukin-22 Is Frequently Expressed in Small- and Large-Cell Lung Cancer and Promotes Growth in Chemotherapy-Resistant Cancer Cells
Introduction: In lung cancer, interleukin-22 (IL-22) expression within primary tissue has been demonstrated, but the frequency and the functional consequence of IL-22 signaling have not been addressed. This study aims at analyzing the cellular effects of IL-22 on lung carcinoma cell lines and the prognostic impact of IL-22 tissue expression in lung cancer patients. Methods: Biological effects of IL-22 signaling were investigated in seven lung cancer cell lines by Western blot, flow cytometry, real-time polymerase chain reaction, and proliferation assays. Tumor tissue specimens of two cohorts with a total of 2300 lung cancer patients were tested for IL-22 expression by immunohistochemistry. IL-22 serum concentrations were analyzed in 103 additional patients by enzyme-linked immunosorbent assay. Results: We found the IL-22 receptor 1 (IL-22-R1) to be expressed in six of seven lung cancer cell lines. However IL-22 signaling was functional in only four cell lines, where IL-22 induced signal transducer activator of transcription 3 phosphorylation and increased cell proliferation. Furthermore, IL-22 induced the expression of antiapoptotic B-cell lymphoma 2, but did not rescue tumor cells from carboplatin-induced apoptosis. Cisplatin-resistant cell lines showed a significant up-regulation of IL-22-R1 along with a stronger proliferative response to IL-22 stimulation. IL-22 was preferentially expressed in small- and large-cell lung carcinoma (58% and 46% of cases, respectively). However, no correlation between IL-22 expression by immunohistochemistry and prognosis was observed. Conclusion: IL-22 is frequently expressed in lung cancer tissue. Enhanced IL-22-R1 expression and signaling in chemotherapy-refractory cell lines are indicative of a protumorigenic function of IL-22 and may contribute to a more aggressive phenotype
Selective Bispecific T Cell Recruiting Antibody and Antitumor Activity of Adoptive T Cell Transfer
Background: One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. Methods: SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40+ and EpCAM+). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met+ human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. Results: The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase+ melanoma cells by TCR-, as well as of CEA+ colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. Conclusions: BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of AC
Metabolic implication of tigecycline as an efficacious second-line treatment for sorafenib-resistant hepatocellular carcinoma
Sorafenib represents the current standard of care for patients with advanced-stage hepatocellular carcinoma (HCC). However, acquired drug resistance occurs frequently during therapy and is accompanied by rapid tumor regrowth after sorafenib therapy termination. To identify the mechanism of this therapy-limiting growth resumption, we established robust sorafenib resistance HCC cell models that exhibited mitochondrial dysfunction and chemotherapeutic crossresistance. We found a rapid relapse of tumor cell proliferation after sorafenib withdrawal, which was caused by renewal of mitochondrial structures alongside a metabolic switch toward high electron transport system (ETS) activity. The translation-inhibiting antibiotic tigecycline impaired the biogenesis of mitochondrial DNA-encoded ETS subunits and limited the electron acceptor turnover required for glutamine oxidation. Thereby, tigecycline prevented the tumor relapse in vitro and in murine xenografts in vivo. These results offer a promising second-line therapeutic approach for advanced-stage HCC patients with progressive disease undergoing sorafenib therapy or treatment interruption due to severe adverse events
The E3 Ubiquitin Ligase TRIM9 Is a Filopodia Off Switch Required for Netrin-Dependent Axon Guidance
Neuronal growth cone filopodia contain guidance receptors and contribute to axon guidance; however, the mechanism by which the guidance cue netrin increases filopodia density is unknown. Here, we demonstrate that TRIM9, an E3 ubiquitin ligase that localizes to filopodia tips and binds the netrin receptor DCC, interacts with and ubiquitinates the barbed-end polymerase VASP to modulate filopodial stability during netrin-dependent axon guidance. Studies with murine Trim9(+/+) and Trim9(-/-) cortical neurons, along with a non-ubiquitinatable VASP mutant, demonstrate that TRIM9-mediated ubiquitination of VASP reduces VASP filopodial tip localization, VASP dynamics at tips, and filopodial stability. Upon netrin treatment, VASP is deubiquitinated, which promotes VASP tip localization and filopodial stability. Trim9 deletion induces axon guidance defects in vitro and in vivo, whereas a gradient of deubiquitinase inhibition promotes axon turning in vitro. We conclude that a gradient of TRIM9-mediated ubiquitination of VASP creates a filopodial stability gradient during axon turning
Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer
Background: One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy.Methods: SV40 T antigen–specific T cells from T cell receptor (TCR)-I–transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR–anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40+ and EpCAM+). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met+ human tumor cell lines. Differences between experimental conditions were analyzed using the Student’s t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided.Results: The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR–transduced T cells to immobilized c-Met and recognition of tyrosinase+ melanoma cells by TCR-, as well as of CEA+ colon cancer cells by chimeric antigen receptor (CAR)–modified T cells.Conclusions: BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT