10,459 research outputs found

    Towards experience management for Search Engine Optimisation

    Get PDF
    Websites of Small and Medium-sized Enterprises (SMEs) can gain an added advantage by getting listed in the search engine’s results page during the search sessions of the searchers. The Search Engine Optimisation (SEO) enables websites to become visible in search engines during search sessions for its featured products or services. It generates additional revenue for the websites. SEO is a complex technique. Its knowledge and experience gained from optimising websites in the past is highly valuable and applicable to optimise websites. This paper dis- cusses the problem of optimisation of websites based on the experience gained by the authors from optimisation of several case study websites. Process models have been generated in order to capture experience of implementing essential elements of SEO and to explain the procedure of implementation of the fundamental on-page SEO techniques that yielded results for the case study websites

    Nuclear Structure in the Framework of the Unitary Correlation Operator Method

    Full text link
    Correlations play a crucial role in the nuclear many-body problem. We give an overview of recent developments in nuclear structure theory aiming at the description of these interaction-induced correlations by unitary transformations. We focus on the Unitary Correlation Operator Method (UCOM), which offers a very intuitive, universal and robust approach for the treatment of short-range correlations. We discuss the UCOM formalism in detail and highlight the connections to other methods for the description of short-range correlations and the construction of effective interactions. In particular, we juxtapose UCOM with the Similarity Renormalization Group (SRG) approach, which implements the unitary transformation of the Hamiltonian through a very flexible flow-equation formulation. The UCOM- and SRG-transformed interactions are compared on the level of matrix elements and in many-body calculations within the no-core shell model and with Hartree-Fock plus perturbation theory for a variety of nuclei and observables. These calculations provide a detailed picture of the similarities and differences as well as the advantages and limitations of unitary transformation methods.Comment: 72 pages, 31 figure

    Nuclear Structure - "ab initio"

    Full text link
    An ab-initio description of atomic nuclei that solves the nuclear many-body problem for realistic nuclear forces is expected to possess a high degree of predictive power. In this contribution we treat the main obstacle, namely the short-ranged repulsive and tensor correlations induced by the realistic nucleon-nucleon interaction, by means of a unitary correlation operator. This correlator applied to uncorrelated many-body states imprints short-ranged correlations that cannot be described by product states. When applied to an observable it induces the correlations into the operator, creating for example a correlated Hamiltonian suited for Slater determinants. Adding to the correlated realistic interaction a correction for three-body effects, consisting of a momentum-dependent central and spin-orbit two-body potential we obtain an effective interaction that is successfully used for all nuclei up to mass 60. Various results are shown.Comment: 9 pages, Invited talk and poster at the international symposium "A New Era of Nuclear Structure Physics" (NENS03), Niigata, Japan, Nov. 19-22, 200

    The Odds are Odd: A Statistical Test for Detecting Adversarial Examples

    Full text link
    We investigate conditions under which test statistics exist that can reliably detect examples, which have been adversarially manipulated in a white-box attack. These statistics can be easily computed and calibrated by randomly corrupting inputs. They exploit certain anomalies that adversarial attacks introduce, in particular if they follow the paradigm of choosing perturbations optimally under p-norm constraints. Access to the log-odds is the only requirement to defend models. We justify our approach empirically, but also provide conditions under which detectability via the suggested test statistics is guaranteed to be effective. In our experiments, we show that it is even possible to correct test time predictions for adversarial attacks with high accuracy

    Data literacy in the smart university approach

    Get PDF
    Equipping classrooms with inexpensive sensors for data collection can provide students and teachers with the opportunity to interact with the classroom in a smart way. In this paper two approaches to acquiring contextual data from a classroom environment are presented. We further present our approach to analysing the collected room usage data on site, using low cost single board computer, such as a Raspberry Pi and Arduino units, performing a significant part of the data analysis on-site. We demonstrate how the usage data was used to model specifcic room usage situation as cases in a Case-based reasoning (CBR) system. The room usage data was then integrated in a room recommender system, reasoning on the formalised usage data, allowing for a convenient and intuitive end user experience based on the collected raw sensor data. Having implemented and tested our approaches we are currently investigating the possibility of using (XML)Schema-informed compression to enhance the security and efficiency of the transmission of a large number of sensor reports generated by interpreting the raw data on-site, to our central data sink. We are investigating this new approach to usage data transmission as we are aiming to integrate our on-going work into our vision of the Smart University to ensure and enhance the Smart University's data literacy

    Two-phased knowledge formalisation for hydrometallurgical gold ore process recommendation and validation

    Get PDF
    This paper describes an approach to externalising and formalising expert knowledge involved in the design and evaluation of hydrometallurgical process chains for gold ore treatment. The objective was to create a case-based reasoning application for recommending and validating a treatment process of gold ores. We describe a twofold approach. Formalising human expert knowledge about gold mining situations enables the retrieval of similar mining contexts and respective process chains, based on prospection data gathered from a potential gold mining site. Secondly, empirical knowledge on hydrometallurgical treatments is formalised. This enabled us to evaluate and, where needed, redesign the process chain that was recommended by the first aspect of our approach. The main problems with formalisation of knowledge in the domain of gold ore refinement are the diversity and the amount of parameters used in literature and by experts to describe a mining context. We demonstrate how similarity knowledge was used to formalise literature knowledge. The evaluation of data gathered from experiments with an initial prototype workflow recommender, Auric Adviser, provides promising results
    • …
    corecore