94 research outputs found

    Nonlinear techniques for forecasting solar activity directly from its time series

    Get PDF
    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension

    Rapid Design of Gravity Assist Trajectories

    Get PDF
    Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described

    A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)

    Get PDF
    The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance)

    Analysis of reentry into the White Sands Missile Range (WSMR) for the LifeSat mission

    Get PDF
    This study investigates the reentry of the LifeSat vehicles into the WSMR. The LifeSat mission consists of two reusable reentry satellites, each carrying a removable payload module, which scientists will use to study long-term effects of microgravity, Van Allen belt radiation, and galactic cosmic rays on living organisms. A series of missions is planned for both low-Earth circular orbits and highly elliptic orbits. To recover the payload module with the specimens intact, a soft parachute landing and recovery at the WSMR is planned. This analysis examines operational issues surrounding the reentry scenario to assess the feasibility of the reentry

    Inability of mitogen-activated lymphocytes obtained from patients with malignant primary intracranial tumors to express high affinity interleukin 2 receptors.

    Get PDF
    Patients with primary malignant brain tumors manifest a variety of abnormalities in cell-mediated and humoral immunity. Diminished T cell reactivity has been shown in these patients to be linked to deficiencies in interleukin 2 (IL-2) production that cannot be overcome by exogenous IL-2. In this study, specific binding of radiolabeled IL-2 to PHA-stimulated lymphocytes from brain tumor patients demonstrates that the number of high affinity interleukin 2 receptors (IL-2R) is greatly reduced. FACS analysis indicates that the relative density of the p55 protein (Tac protein) is lower on the mitogen-activated lymphocytes obtained from patients than on comparably treated lymphocytes from normal individuals. These data indicate that mitogen-stimulated lymphocytes obtained from patients have fewer functional high affinity IL-2R principally because of the failure to express sufficient levels of the p55 protein for association with the p75 protein. Northern analysis of total RNA isolated from mitogen-stimulated T cells from patients demonstrates normal levels of steady state mRNA, which codes for the p55 protein. Moreover, there is no defect in the postranslational processing of the primary translation product of this mRNA suggesting that normal levels of the p55 protein are produced in activated T cells from patients
    corecore