311 research outputs found

    Quantitative Assessment of the Impact of Crohn\u27s Disease on Protein Abundance of Human Intestinal Drug-Metabolising Enzymes and Transporters

    Get PDF
    Crohn\u27s disease affects the mucosal layer of the intestine, predominantly ileum and colon segments, with the potential to affect the expression of intestinal enzymes and transporters, and consequently, oral drug bioavailability. We carried out a quantitative proteomic analysis of inflamed and non-inflamed ileum and colon tissues from Crohn\u27s disease patients and healthy donors. Homogenates from samples in each group were pooled and protein abundance determined by liquid chromatography–mass spectrometry (LC-MS). In inflamed Crohn\u27s ileum, CYP3A4, CYP20A1, CYP51A1, ADH1B, ALPI, FOM1, SULT1A2, SULT1B1 and ABCB7 showed ≄10-fold reduction in abundance compared with healthy baseline. By contrast, only MGST1 showed ≄10 fold reduction in inflamed colon. Ileal UGT1A1, MGST1, MGST2, and MAOA levels increased by ≄2 fold in Crohn\u27s patients, while only ALPI showed ≄2 fold increase in the colon. Counter-intuitively, non-inflamed ileum had a higher magnitude of fold change than inflamed tissue when compared with healthy tissue. Marked but non-uniform alterations were observed in the expression of various enzymes and transporters in ileum and colon compared with healthy samples. Modelling will allow improved understanding of the variable effects of Crohn\u27s disease on bioavailability of orally administered drugs

    Virtual bioequivalence for achlorhydric subjects: The use of PBPK modelling to assess the formulation-dependent effect of achlorhydria

    Get PDF
    Majority of bioequivalence studies are conducted in healthy volunteers. It has been argued that bioequivalence may not necessarily hold true in relevant patient populations due to a variety of reasons which affect one formulation more than the other for instance in achlorhydric patients where elevated gastric pH may lead to differential effects on formulations which are pH-sensitive with respect to release or dissolution. We therefore examined achlorhydria-related disparity in bioequivalence of levothyroxine and nifedipine formulations using virtual bioequivalence within a physiologically-based pharmacokinetic (PBPK) modelling framework. The in vitro dissolution profiles at neutral pH were incorporated into PBPK models to mimic the achlorhydria with in vitro–in vivo relationship established using bio-relevant pH media. The PBPK models successfully reproduced the outcome of the bioequivalence studies in healthy volunteers under the normal conditions as well as under proton pump inhibitor-induced achlorhydria. The geometric mean test/reference ratios for Cmax and AUC between levothyroxine tablet and capsule in patients receiving proton pump inhibitor were 1.21 (90%CI, 1.13–1.29) and 1.09 (90%CI, 1.02–1.17), respectively. Extension of the virtual bioequivalence study to Japanese elderly, who show high incidence of achlorhydria, indicated bio-inequivalence which Cmax and AUC ratios between nifedipine control-released reference and test formulations were 3.08 (90%CI, 2.81–3.38) and 1.57 (90%CI, 1.43–1.74), respectively. Virtual bioequivalence studies through the PBPK models can highlight the need for conduct of specific studies in elderly Japanese populations where there are discrepancies in pH-sensitivity of dissolution between the test and reference formulations

    The Use of ROC Analysis for the Qualitative Prediction of Human Oral Bioavailability from Animal Data

    Get PDF
    PURPOSE: To develop and evaluate a tool for the qualitative prediction of human oral bioavailability (F(human)) from animal oral bioavailability (F(animal)) data employing ROC analysis and to identify the optimal thresholds for such predictions. METHODS: A dataset of 184 compounds with known F(human) and F(animal) in at least one species (mouse, rat, dog and non-human primates (NHP)) was employed. A binary classification model for F(human) was built by setting a threshold for high/low F(human) at 50%. The thresholds for high/low F(animal) were varied from 0 to 100 to generate the ROC curves. Optimal thresholds were derived from ‘cost analysis’ and the outcomes with respect to false negative and false positive predictions were analyzed against the BDDCS class distributions. RESULTS: We successfully built ROC curves for the combined dataset and per individual species. Optimal F(animal) thresholds were found to be 67% (mouse), 22% (rat), 58% (dog), 35% (NHP) and 47% (combined dataset). No significant trends were observed when sub-categorizing the outcomes by the BDDCS. CONCLUSIONS: F(animal) can predict high/low F(human) with adequate sensitivity and specificity. This methodology and associated thresholds can be employed as part of decisions related to planning necessary studies during development of new drug candidates and lead selection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11095-013-1193-2) contains supplementary material, which is available to authorized users

    Proteomics of Colorectal Cancer Liver Metastasis: a Quantitative Focus on Drug Elimination and Pharmacodynamics Effects

    Get PDF
    AIMS: This study aims to quantify drug‐metabolising enzymes, transporters, receptor tyrosine kinases (RTKs) and protein markers (involved in pathways affected in cancer) in pooled healthy, histologically normal and matched cancerous liver microsomes from colorectal cancer liver metastasis (CRLM) patients. METHODS: Microsomal fractionation was performed and pooled microsomes were prepared. Global and accurate mass and retention time liquid chromatography–mass spectrometry proteomics were used to quantify proteins. A QconCAT (KinCAT) for the quantification of RTKs was designed and applied for the first time. Physiologically based pharmacokinetic (PBPK) simulations were performed to assess the contribution of altered abundance of drug‐metabolising enzymes and transporters to changes in pharmacokinetics. RESULTS: Most CYPs and UGTs were downregulated in histologically normal relative to healthy samples, and were further reduced in cancer samples (up to 54‐fold). The transporters, MRP2/3, OAT2/7 and OATP2B1/1B3/1B1 were downregulated in CRLM. Application of abundance data in PBPK models for substrates with different attributes indicated substantially lower (up to 13‐fold) drug clearance when using cancer‐specific instead of default parameters in cancer population. Liver function markers were downregulated, while inflammation proteins were upregulated (by up to 76‐fold) in cancer samples. Various pharmacodynamics markers (e.g. RTKs) were altered in CRLM. Using global proteomics, we examined proteins in pathways relevant to cancer (such as metastasis and desmoplasia), including caveolins and collagen chains, and confirmed general over‐expression of such pathways. CONCLUSION: This study highlights impaired drug metabolism, perturbed drug transport and altered abundance of cancer markers in CRLM, demonstrating the importance of population‐specific abundance data in PBPK models for cancer

    Quantitative Proteomics of Hepatic Drug-Metabolizing Enzymes and Transporters in Patients With Colorectal Cancer Metastasis

    Get PDF
    The impact of liver cancer metastasis on protein abundance of 22 drug-metabolizing enzymes (DMEs) and 25 transporters was investigated using liquid chromatography-tandem accurate mass spectrometry targeted proteomics. Microsomes were prepared from liver tissue taken from 15 healthy individuals and 18 patients with cancer (2 primary and 16 metastatic). Patient samples included tumors and matching histologically normal tissue. The levels of cytochrome P450 (CYPs 2B6, 2D6, 2E1, 3A4, and 3A5) and uridine 5â€Č-diphospho-glucuronosyltransferases (UGTs 1A1, 1A6, 1A9, 2B15, 2B4, and 2B7) were lower in histologically normal tissue from patients relative to healthy controls (up to 6.6-fold) and decreased further in tumors (up to 21-fold for CYPs and 58-fold for UGTs). BSEP and MRPs were also suppressed in histologically normal (up to 3.1-fold) and tumorous tissue (up to 6.3-fold) relative to healthy individuals. Abundance of OCT3, OAT2, OAT7, and OATPs followed similar trends (up to 2.9-fold lower in histologically normal tissue and up to 16-fold lower in tumors). Abundance of NTCP and OCT1 was also lower (up to 9-fold). Interestingly, monocarboxylate transporter MCT1 was more abundant (3.3-fold) in tumors, the only protein target to show this pattern. These perturbations could be attributed to inflammation. Interindividual variability was substantially higher in patients with cancer. Proteomics-informed physiologically-based pharmacokinetic (PBPK) models of 50 drugs with different attributes and hepatic extraction ratios (Simcyp) showed substantially lower drug clearance with cancer-specific parameters compared with default parameters. In conclusion, this study provides values for decreased abundance of DMEs and transporters in liver cancer, which enables using population-specific abundance for these patients in PBPK modeling
    • 

    corecore