73 research outputs found

    Using classification and regression tree modelling to investigate response shift patterns in dentine hypersensitivity

    Get PDF
    BACKGROUND: Dentine hypersensitivity (DH) affects people's quality of life (QoL). However changes in the internal meaning of QoL, known as Response shift (RS) may undermine longitudinal assessment of QoL. This study aimed to describe patterns of RS in people with DH using Classification and Regression Trees (CRT) and to explore the convergent validity of CRT with the then-test and ideals approaches. METHODS: Data from an 8-week clinical trial of mouthwashes for dentine hypersensitivity (n = 75) using the Dentine Hypersensitivity Experience Questionnaire (DHEQ) as the outcome measure, were analysed. CRT was used to examine 8-week changes in DHEQ total score as a dependent variable with clinical status for DH and each DHEQ subscale score (restrictions, coping, social, emotional and identity) as independent variables. Recalibration was inferred when the clinical change was not consistent with the DHEQ change score using a minimally important difference for DHEQ of 22 points. Reprioritization was inferred by changes in the relative importance of each subscale to the model over time. RESULTS: Overall, 50.7% of participants experienced a clinical improvement in their DH after treatment and 22.7% experienced an important improvement in their quality of life. Thirty-six per cent shifted their internal standards downward and 14.7% upwards, suggesting recalibration. Reprioritization occurred over time among the social and emotional impacts of DH. CONCLUSIONS: CRT was a useful method to reveal both, the types and nature of RS in people with a mild health condition and demonstrated convergent validity with design based approaches to detect RS

    Circadian clock and vascular disease.

    Get PDF
    Cardiovascular functions, including blood pressure and vascular functions, show diurnal oscillation. Circadian variations have been clearly shown in the occurrence of cardiovascular events such as acute myocardial infarction. Circadian rhythm strongly influences human biology and pathology. The identification and characterization of mammalian clock genes revealed that they are expressed almost everywhere throughout the body in a circadian manner. In contrast to the central clock in the suprachiasmatic nucleus (SCN), the clock in each tissue or cell is designated as a peripheral clock. It is now accepted that peripheral clocks have their own roles specific to each peripheral organ by regulating the expression of clock-controlled genes (CCGs), although the oscillation mechanisms of the peripheral clock are similar to that of the SCN. However, little was known about how the peripheral clock in the vasculature contributes to the process of cardiovascular disorders. The biological clock allows each organ or cell to anticipate and prepare for changes in external stimuli. Recent evidence obtained using genetically engineered mice with disrupted circadian rhythm showed a novel function of the internal clock in the pathogenesis of endothelial dysfunction, hypertension and hemostasis. Loss of synchronization between the central and peripheral clock also contributes to the pathogenesis of cardiovascular diseases, as restoration of clock homeostasis could prevent disease progression. Identification of CCGs in each organ, as well as discovery of tools to manipulate the phase of each biological clock, will be of great help in establishing a novel chronotherapeutic approach to the prevention and treatment of cardiovascular disorders

    Memory performances before and after transient global amnesia.

    No full text

    Circadian variation in the frequency of ischemic stroke.

    No full text

    Late sudden death after repair of tetralogy of Fallot: a clinicopathologic study.

    No full text
    corecore