195 research outputs found

    Acyclic orientations with path constraints

    Get PDF
    Many well-known combinatorial optimization problems can be stated over the set of acyclic orientations of an undirected graph. For example, acyclic orientations with certain diameter constraints are closely related to the optimal solutions of the vertex coloring and frequency assignment problems. In this paper we introduce a linear programming formulation of acyclic orientations with path constraints, and discuss its use in the solution of the vertex coloring problem and some versions of the frequency assignment problem. A study of the polytope associated with the formulation is presented, including proofs of which constraints of the formulation are facet-defining and the introduction of new classes of valid inequalities

    Exploratory

    Get PDF
    Cryopreservation is a viable option for conservation of coffee germplasm. However, for this technique to be completely successful, it is of fundamental importance to carry out studies that ensure maintenance of cell integrity before and after immersion in liquid nitrogen (LN). Therefore, the aim in this study was to investigate the water content, cooling rate, and final temperature most suitable for cryopreservation of Coffea arabica L. seeds. The seeds were dried by silica gel to water contents of 5, 10, 15, 20, 30 and 40 % wb, subjected to slow cooling treatments at speeds of -1, -3 and -5 °C min.-1 to final temperatures of -40, -50 and -60 °C and then directly immersed in LN. After storage, seeds were rewarmed at 40 °C for two minutes. The survival rate and viability of the seeds and embryos were evaluated by the tetrazolium and germination tests. Results of the tetrazolium test indicate that embryos excised from cryopreserved seeds are less sensitive to cryopreservation than whole seeds are. The water content of 20% wb and the use of zygotic embryos led to the highest survival rate of the coffee seeds, depending on the cooling rate and the final temperature of precooling.Título em português: Estudos exploratórios para a criopreservação de sementes de Coffea arabica L

    Materiais alternativos, em substituição à maravalha como cama de frangos.

    Get PDF
    bitstream/item/58061/1/CUsersPiazzonDocuments465.pdfProjeto n. 01.02.10.406.0

    Tolerance of Coffea arabica L. seeds to sub zero temperatures.

    Get PDF
    Preservation of the quality of coffee seeds is hindered by their intermediate behavior in storage. However, long-term storage at sub zero temperatures may be achieved by adjusting the water content of the seeds. The aim of this study was to evaluate the tolerance of coffee seeds to freezing, in relation to physiological and enzymatic modifications. Coffee seeds were dried in two manners, rapid and slow, to water contents of interest, 0.67, 0.43, 0.25, 0.18, 0.11, and 0.05 g H2O g-¹ dw (dry basis). After drying, the seeds were stored at a temperature of -20 ºC and of 86 ºC for 24 hours and for 12 months, and then compared to seeds in cold storage at 10 ºC. The seeds were evaluated through calculation of percentage of normal seedlings, percentage of seedlings with expanded cotyledonary leaves, dry matter of roots and of hypocotyls, and viability of embryos in the tetrazolium test. Expression of the enzymes superoxide dismutase, catalase, and peroxidase were evaluated by means of electrophoretic analysis. Only seeds dried more slowly to 0.18 g H2O g-1 dw present relative tolerance to storing at -20 °C for 12 months. Coffee seeds do not tolerate storage at a temperature of -86 ºC for 12 months. Water contents below 0.11g H2O g-¹ dw and above 0.43 g H2O g-¹ dw hurt the physiological quality of coffee seeds, regardless of the type of drying, temperature, and storage period. Coffee seed embryos are more tolerant to desiccation and to freezing compared to whole seeds, especially when the seeds are dried to 0.05 g H2O g-¹ dw. The catalase enzyme can be used as a biochemical marker to study tolerance to freezing in coffee seeds.Título em português: Tolerância de sementes de Coffea arabica L. à temperaturas sub zero

    Physiological, biochemical, and ultrastructural aspects of Coffea arabica L. seeds under different cryopreservation protocols.

    Get PDF
    Cryopreservation is a technique that may potentially conserve the germplasm of species of the Coffea genus for an indeterminate time. The aim of this study was to evaluate the physiological, biochemical and ultrastructural characteristics of cryopreserved seeds of Coffea arabica L., cultivar Catucaí amarelo IAC 62, which was subjected to different protocols regarding dehydration, precooling, cooling, rewarming and cathode water use. According to each protocol, the seeds were subjected to fast or slow drying to moisture contents of 17 or 20% (wet basis), cooled in different ways, and then immersed in liquid nitrogen for 24 hours. Different rewarming times in a water bath were also used. Physiological, biochemical and ultrastructural analyses were performed on the seeds after the cryopreservation steps. Moisture content at a 17% wb is the key factor for the cryopreservation of Coffea arabica L. seeds, which have better physiological quality and better preserved cell structures. Precooling of coffee seeds before immersion in liquid nitrogen does not provide advantages compared to direct immersion. The rewarming times tested (2, 4, and 6 minutes) and cathode water use did not cause changes in the physiological and biochemical quality or in the cell structures of Coffea arabica L. cryopreserved seeds. The pattern of cell structure observed in all seeds indicates that the damage from cryopreservation is less drastic in the cells of the embryos than in those of the endosperm, with the latter less tolerant to the stresses of dehydration, precooling, and rewarming.Título em português: Aspectos fisiológicos, bioquímicos e ultraestruturais de sementes de Coffea arabica L. submetidas a diferentes protocolos de criopreservação
    corecore