103 research outputs found

    Predictors of Ips confusus Outbreaks During a Record Drought in Southwestern USA: Implications for Monitoring and Management

    Get PDF
    In many ecosystems the effects of disturbance can be cryptic and disturbance may vary in subtle spatiotemporal ways. For instance, we know that bark beetle outbreaks are more frequent in temperate forests during droughts; however, we have little idea about why they occur in some locations and not others. Understanding biotic and abiotic factors promoting bark beetle outbreaks can be critical to predicting and responding to pest outbreaks. Here we address the environmental factors which are associated with Ips confusus outbreaks during the 2002 widespread drought within the distribution range of pinyon pine woodlands in Arizona. We used univariate statistics to test if whether tree characteristics, other herbivores, stand properties, soil type, wind, and topography were associated with I. confusus outbreak, and logistic regression to create a predictive model for the outbreaks. We found that I. confusus attacks occur in low elevation stands on steeper slopes, where favorable winds for I. confusus dispersion occur. I. confusus select larger trees, in high density stands with understory shrubs that exhibit phenotypic traits characteristic of resistance to stem-boring moths. The model was highly accurate, and explained 95% of the variability in occurrence (98% of the absences and 95% of the presences). Accurate prediction of the impacts of disturbance allow us to anticipate, minimize or mitigate for and eventually counteract its effects, especially those affecting diversity and ecosystem function. Identification of outbreak risk areas can guide regional and national management towards the reduction of infestation risk and enhancing conservation of pinyon-juniper woodlands

    Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer

    Get PDF
    Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes[superscript 3]. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.Susan G. Komen Breast Cancer Foundation (Fellowship)Life Sciences Research Foundation (Fellowship)W. M. Keck FoundationDavid H. Koch Cancer Research FundAlexander and Margaret Stewart TrustNational Institutes of Health (U.S.) (Grant CA103866

    Hierarchical chemosensory regulation of male-male social interactions in Drosophila

    Get PDF
    Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. We found that (z)-7-tricosene, a male-enriched cuticular hydrocarbon that was previously shown to inhibit male-male courtship, was essential for normal levels of aggression. The mechanisms by which (z)-7-tricosene induced aggression and suppressed courtship were independent, but both required the gustatory receptor Gr32a. Sensitivity to (z)-7-tricosene was required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but (z)-7-tricosene sensitivity was independent of cVA. (z)-7-tricosene and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male cuticular hydrocarbons was suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote aggression and suppress courtship, and whose influences are dominant to olfactory pheromones that enhance these behaviors

    The Proteomic Code: a molecular recognition code for proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Proteomic Code is a set of rules by which information in genetic material is transferred into the physico-chemical properties of amino acids. It determines how individual amino acids interact with each other during folding and in specific protein-protein interactions. The Proteomic Code is part of the redundant Genetic Code.</p> <p>Review</p> <p>The 25-year-old history of this concept is reviewed from the first independent suggestions by Biro and Mekler, through the works of Blalock, Root-Bernstein, Siemion, Miller and others, followed by the discovery of a Common Periodic Table of Codons and Nucleic Acids in 2003 and culminating in the recent conceptualization of partial complementary coding of interacting amino acids as well as the theory of the nucleic acid-assisted protein folding.</p> <p>Methods and conclusions</p> <p>A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP) is presented. This method is based on the concept of proteomic codes and is suitable for large-scale, industrial production of specifically interacting peptides.</p

    Changing patterns in diagnostic strategies and the treatment of blunt injury to solid abdominal organs

    Get PDF
    Background: In recent years there has been increasing interest shown in the nonoperative management (NOM) of blunt traumatic injury. The growing use of NOM for blunt abdominal organ injury has been made possible because of the progress made in the quality and availability of the multidetector computed tomography (MDCT) scan and the development of minimally invasive intervention options such as angioembolization. Aim: The purpose of this review is to describe the changes that have been made over the past decades in the management of blunt trauma to the liver, spleen and kidney. Results: The management of blunt abdominal injury has changed considerably. Focused assessment with sonography for trauma (FAST) examination has replaced diagnostic peritoneal lavage as diagnostic modality in the primary survey. MDCT scanning with intravenous contrast is now the gold standard diagnostic modality in hemodynamically stable patients with intra-abdominal fluid detected with FAST. One of the current discussions in the l erature is whether a whole body MDCT survey should be implemented in the primary survey. Conclusions The progress in imaging techniques has contributed to NOM being currently the treatment of choice for hemodynamically stable patients. Angioembolization can be used as an adjunct to NOM and has increased the succe

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Infant and Child Mortality in India in the Last Two Decades: A Geospatial Analysis

    Get PDF
    Studies examining the intricate interplay between poverty, female literacy, child malnutrition, and child mortality are rare in demographic literature. Given the recent focus on Millennium Development Goals 4 (child survival) and 5 (maternal health), we explored whether the geographic regions that were underprivileged in terms of wealth, female literacy, child nutrition, or safe delivery were also grappling with the elevated risk of child mortality; whether there were any spatial outliers; whether these relationships have undergone any significant change over historical time periods.The present paper attempted to investigate these critical questions using data from household surveys like NFHS 1992-1993, NFHS 1998-1999 and DLHS 2002-2004. For the first time, we employed geo-spatial techniques like Moran's-I, univariate LISA, bivariate LISA, spatial error regression, and spatiotemporal regression to address the research problem. For carrying out the geospatial analysis, we classified India into 76 natural regions based on the agro-climatic scheme proposed by Bhat and Zavier (1999) following the Census of India Study and all estimates were generated for each of the geographic regions.This study brings out the stark intra-state and inter-regional disparities in infant and under-five mortality in India over the past two decades. It further reveals, for the first time, that geographic regions that were underprivileged in child nutrition or wealth or female literacy were also likely to be disadvantaged in terms of infant and child survival irrespective of the state to which they belong. While the role of economic status in explaining child malnutrition and child survival has weakened, the effect of mother's education has actually become stronger over time
    corecore