119 research outputs found
The Complexity of Reasoning with FODD and GFODD
Recent work introduced Generalized First Order Decision Diagrams (GFODD) as a
knowledge representation that is useful in mechanizing decision theoretic
planning in relational domains. GFODDs generalize function-free first order
logic and include numerical values and numerical generalizations of existential
and universal quantification. Previous work presented heuristic inference
algorithms for GFODDs and implemented these heuristics in systems for decision
theoretic planning. In this paper, we study the complexity of the computational
problems addressed by such implementations. In particular, we study the
evaluation problem, the satisfiability problem, and the equivalence problem for
GFODDs under the assumption that the size of the intended model is given with
the problem, a restriction that guarantees decidability. Our results provide a
complete characterization placing these problems within the polynomial
hierarchy. The same characterization applies to the corresponding restriction
of problems in first order logic, giving an interesting new avenue for
efficient inference when the number of objects is bounded. Our results show
that for formulas, and for corresponding GFODDs, evaluation and
satisfiability are complete, and equivalence is
complete. For formulas evaluation is complete, satisfiability
is one level higher and is complete, and equivalence is
complete.Comment: A short version of this paper appears in AAAI 2014. Version 2
includes a reorganization and some expanded proof
Adaptive Robotic Information Gathering via Non-Stationary Gaussian Processes
Robotic Information Gathering (RIG) is a foundational research topic that
answers how a robot (team) collects informative data to efficiently build an
accurate model of an unknown target function under robot embodiment
constraints. RIG has many applications, including but not limited to autonomous
exploration and mapping, 3D reconstruction or inspection, search and rescue,
and environmental monitoring. A RIG system relies on a probabilistic model's
prediction uncertainty to identify critical areas for informative data
collection. Gaussian Processes (GPs) with stationary kernels have been widely
adopted for spatial modeling. However, real-world spatial data is typically
non-stationary -- different locations do not have the same degree of
variability. As a result, the prediction uncertainty does not accurately reveal
prediction error, limiting the success of RIG algorithms. We propose a family
of non-stationary kernels named Attentive Kernel (AK), which is simple, robust,
and can extend any existing kernel to a non-stationary one. We evaluate the new
kernel in elevation mapping tasks, where AK provides better accuracy and
uncertainty quantification over the commonly used stationary kernels and the
leading non-stationary kernels. The improved uncertainty quantification guides
the downstream informative planner to collect more valuable data around the
high-error area, further increasing prediction accuracy. A field experiment
demonstrates that the proposed method can guide an Autonomous Surface Vehicle
(ASV) to prioritize data collection in locations with significant spatial
variations, enabling the model to characterize salient environmental features.Comment: International Journal of Robotics Research (IJRR). arXiv admin note:
text overlap with arXiv:2205.0642
Stochastic Planning with Lifted Symbolic Trajectory Optimization
This paper investigates online stochastic planning for problems with large factored state and action spaces. One promising approach in recent work estimates the quality of applicable actions in the current state through aggregate simulation from the states they reach. This leads to significant speedup, compared to search over concrete states and actions, and suffices to guide decision making in cases where the performance of a random policy is informative of the quality of a state. The paper makes two significant improvements to this approach. The first, taking inspiration from lifted belief propagation, exploits the structure of the problem to derive a more compact computation graph for aggregate simulation. The second improvement replaces the random policy embedded in the computation graph with symbolic variables that are optimized simultaneously with the search for high quality actions. This expands the scope of the approach to problems that require deep search and where information is lost quickly with random steps. An empirical evaluation shows that these ideas significantly improve performance, leading to state of the art performance on hard planning problems
Recommended from our members
Learning to Reason with a Restricted View
The current emphasis of the research in learning theory is on the study of inductive learning (from examples) of concepts (binary classifications of examples). The work in AI identifies other tasks, such as reasoning, as essential for intelligent agents, but those are not supported by the current learning models. The Learning to Reason framework was devised to reconcile inductive learning and efficient reasoning. The framework highlights the fact that new learning questions arise when learning in order to reason. This paper addresses the task of deductive reasoning, and investigates learning to reason problems in which the examples seen are only partially specified. The paper presents several interpretations for partial information in the interface with the environment, and develops model based representations and reasoning algorithms that are suitable to deal with partially observable worlds. Then, learning to reason algorithms that cope with partial information are developed. These results exhibit a tradeoff between learnability, the strength of the oracles used in the interface and the expressiveness of the queries asked. This work shows that one can learn to reason with respect to expressive worlds, that cannot be learned efficiently in the traditional learning framework and do not support efficient reasoning in the traditional reasoning framework.Engineering and Applied Science
- …