103 research outputs found
Ground vs. excited state interaction in ruthenium-thienyl dyads:implications for through bond interactions in multicomponent systems
The vibrational and photophysical properties of mononuclear ruthenium(II) and ruthenium(III) polypyridyl complexes based on the ligands 2-(5'-(pyridin-2"-yl)-1'H-1',2',4'-triaz-3'-yl)-thiophene, 2-(5'-(pyrazin-2"-yl)-1'H-1',2',4'-triaz-3'-yl)-thiophene, are reported. The effect of the introduction of the non-innocent thiophene group on the properties of the triazole based ruthenium(II) complex is examined. The pH sensitive 1,2,4-triazole group, although influenced by the electron withdrawing nature of the thiophene group, does not facilitate excited state interaction of the thiophene and Ru(II) centre. Deuteriation and DFT calculations are employed to enable a deeper understanding of the interaction between the two redox-active centres and rationalise the difference between the extent of ground and excited state interaction in this simple dyad. The results obtained provide considerable evidence in support of earlier studies examining differences in ground and excited state interaction in multinuclear thiophene-bridged systems, in particular with respect to HOMO- and LUMO- mediated superexchange interaction processes.
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt⟠, W+bb⟠and W+cc⟠is studied in the forward region of protonâproton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fbâ1 . The W bosons are reconstructed in the decays WââÎœ , where â denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Measurement of the J/Ï pair production cross-section in pp collisions at TeV
The production cross-section of J/Ï pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of TeV, corresponding to an integrated luminosity of 279 ±11 pb. The measurement is performed for J/Ï mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/Ï pair are measured and compared to theoretical predictions.The production cross-section of pairs is measured using a data sample of collisions collected by the LHCb experiment at a centre-of-mass energy of , corresponding to an integrated luminosity of . The measurement is performed for mesons with a transverse momentum of less than in the rapidity range . The production cross-section is measured to be . The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the pair are measured and compared to theoretical predictions
Measurement of forward production in collisions at TeV
A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W â eÎœ production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eÎœ, are measured to be where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination
Measurement of the B0sâÎŒ+ÎŒâ Branching Fraction and Effective Lifetime and Search for B0âÎŒ+ÎŒâ Decays
A search for the rare decays Bs0âÎŒ+ÎŒ- and B0âÎŒ+ÎŒ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4ââfb-1. An excess of Bs0âÎŒ+ÎŒ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0âÎŒ+ÎŒ-)=(3.0±0.6-0.2+0.3)Ă10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0âÎŒ+ÎŒ- effective lifetime, Ï(Bs0âÎŒ+ÎŒ-)=2.04±0.44±0.05ââps, is reported. No significant excess of B0âÎŒ+ÎŒ- decays is found, and a 95% confidence level upper limit, B(B0âÎŒ+ÎŒ-)<3.4Ă10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays and is performed at the LHCb experiment using data collected in collisions corresponding to a total integrated luminosity of 4.4 fb. An excess of decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be , where the first uncertainty is statistical and the second systematic. The first measurement of the effective lifetime, ps, is reported. No significant excess of decays is found and a 95 % confidence level upper limit, , is determined. All results are in agreement with the Standard Model expectations
Measurements of prompt charm production cross-sections in pp collisions at TeV
Production cross-sections of prompt charm mesons are measured using data from collisions at the LHC at a centre-of-mass energy of TeV. The data sample corresponds to an integrated luminosity of pb collected by the LHCb experiment. The production cross-sections of , , , and mesons are measured in bins of charm meson transverse momentum, , and rapidity, . They cover the rapidity range and transverse momentum ranges for and and for and mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb collected by the LHCb experiment. The production cross-sections of D, D, D , and D mesons are measured in bins of charm meson transverse momentum, p, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < p < 10 GeV/c for D and D and 1 < p < 10 GeV/c for D and D mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < p < 8 GeV/c are determined to be where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from collisions at the LHC at a centre-of-mass energy of TeV. The data sample corresponds to an integrated luminosity of pb collected by the LHCb experiment. The production cross-sections of , , , and mesons are measured in bins of charm meson transverse momentum, , and rapidity, . They cover the rapidity range and transverse momentum ranges for and and for and mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively
Measurement of CP violation parameters and polarisation fractions in decays
The first measurement of asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of and . Together with constraints from , the results are used to constrain additional contributions due to penguin diagrams in the -violating phase , measured through decays to charmonium.The first measurement of CP asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb^{â}^{1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Together with constraints from B â J/Ï Ï, the results are used to constrain additional contributions due to penguin diagrams in the CP -violating phase Ï , measured through B decays to charmonium.The first measurement of asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of and . Together with constraints from , the results are used to constrain additional contributions due to penguin diagrams in the -violating phase , measured through decays to charmonium
The effects of ligand substitution and deuteriation on the spectroscopic and photophysical properties of [Ru(LL)(CN)4]2â complexes
The spectroscopic characterisation of a series of [Ru(LL)(CN)4]2â complexes, where LL = 1,10-phenanthroline (phen) and its methyl- and phenyl-substituted derivatives and several deuteriated isotopologues are reported. The optical and vibrational properties of these complexes are compared with that of the series of 2,2'-bipyridine (bipy) derivatives and analogous [Ru(LL)3]2+ complexes. It has been demonstrated that substitution at the 4,4' positions of bipy and 4,7-positions of phen by electron donating (CH3) and withdrawing (C6H5, COOâ) groups induces a pronounced blue and red shift, respectively, in the lowest energy 1MLCT absorption band of [Ru(LL)(CN)4]2â. The energy of the emission originating from the 3MLCT excited state is found to be dependant on the nature of the vibrational modes of the aromatic rings and the electron donating and/or withdrawing properties of the substituents. Single-mode FranckâCondon analysis indicates that methyl substitution leads to a significant increase in the HuangâRhys factor (SM), while phenyl substitution results in a decrease in SM for both series (bipy and phen) of complexes. The rate of non-radiative (knr) and radiative decay (kph) to the ground state and the parameters of thermally activated deactivation pathways (A4th, ÎE4th and Add, ÎEdd) were estimated from the temperature dependence of luminescence quantum yields and lifetimes. It has been demonstrated that the non-radiative decay rate and the temperature dependent decay processes are more efficient for bipy complexes than for phen derivatives due to the rigidity of the latter ligand.
The Early Picosecond Photophysics of Ru(II) Polypyridyl Complexes: A Tale of Two Timescales
The early picosecond time scale excited-state dynamics of the paradigm tris(2,2'-bipyridyl)Ruthenium(II) ([Ru(bpy)3]2+) and related complexes have been examined by picosecond Kerr-gated time-resolved resonance Raman (ps-TR3) spectroscopy. The evolution of the signature Raman bands of the lowest thermally equilibrated excited (THEXI) state under two-color pump/probe conditions show that this state is not fully populated within several hundred femtoseconds as proposed previously but rather only within the first 20 ps following excitation. In addition to an emission observed within the instrument rise time (Ï < 3 ps), the early picosecond dynamics are characterized by a rise in the intensity of the Raman marker bands of the THEXI-3MLCT state, a rise time which, within experimental uncertainty, is not influenced by either partial or complete ligand deuteriation or the presence of ligands other than bpy, as in the heteroleptic complexes [Ru(bpy)2(L1)]+ and [Ru(bpy)2(Hdcb)]+ (where H2dcb is 4,4'-dicarboxy-2,2'-bipyridine and L1 is 2,-(5'-phenyl-4'-[1,2,4]triazole-3'-yl)pyridine). Overall, although the results obtained in the present study are consistent with those obtained from examination of this paradigm complex on the femtosecond timescale, regarding initial formation of the vibrationally hot 3MLCT state by ISC from the singlet Franck-Condon state, the observation that the THEXI-3MLCT state reaches thermal equilibration over a much longer time period than previously suggested warrants a re-examination of views concerning the rapidity with which thermal equilibration of transition metal complex excited states takes place.
Hellish Falls: Faustusâs Dismemberment, Phaetonâs Limbs and Other Renaissance Aviation Disasters â Part I
With its aerial voyages and ominous allusions to the failed aviators Icarus, Lucifer and Simon Magus, Doctor Faustus presents an uncanny commentary on the Renaissance dream of flight. This article uncovers Marloweâs infatuation with human flight as the ultimate act of physical, intellectual and spiritual trangression. So the grisly addition to the B-text, in which a group of scholars examineâlike a forensics team at a crash siteâthe carnage of Faustusâs âmangled limbsâ, is more than a lurid flourish. Mangled limbs are splattered all over the annals of pre-modern aviation. While implicating the play in Renaissance aeronautics, this study of Faustus also has some eye-opening implications for theatre history. Faustus was penned at a time when on-stage ascents and descents became increasingly feasible, and Marloweâs Icarian muse may have spurred the Admiralâs Men to interpolate more spectacular flying effects, taking advantage of the throne, pulleys and dragons recorded in Hensloweâs Diary. The revisions to Faustus not only showcase the flight-simulation capabilities of the Admiralâs playhouses but also associate Marloweâs conjuror with other presumptuous aeronauts in the companyâs repertoire. In particular, Part II of this essay (to be published in a forthcoming issue of English Studies) will argue that Faustusâs âhellish fallâ and dismemberment mirrors that of Phaeton, the titular protagonist of a lost play performed by the Admiralâs Men in 1598. While reading the fall of these characters as a literal enactment of de casibus tragedy, Part II concludes that the increasingly sophisticated aerial stunts reflect a technological optimism about transhuman flight that undercuts the Chorusâs warning not to âpractice more than heavenly power permitsâ
- âŠ