973 research outputs found

    Ligand induced cleavage and nuclear localization of the rice XA21 immune receptor

    Get PDF
    The rice XA21 receptor confers immunity to the Gram-negative bacterial pathogen, _Xanthomonas oryzae_ pv. _oryzae_ (_Xoo_) upon recognition of the conserved microbial signature AxY^S^22. Here, we demonstrate that the intracellular kinase domain of XA21 translocates to the nucleus upon AxY^S^22-mediated perception and that this translocation event is required for XA21-mediated immunity

    Sub1 Rice: Engineering Rice for Climate Change.

    Get PDF
    By the year 2100, the number of people on Earth is expected to increase by ∼50%, placing increasing demands on food production in a time when a changing climate is predicted to compromise crop yields. Feeding this future world requires scientifically informed innovations in agriculture. Here, we describe how a rice gene conferring tolerance to prolonged submergence has helped farmers in South and Southeast Asia mitigate rice crop failure during floods. We discuss how planting of this new variety benefited socially disadvantaged groups. This example indicates that investment in agricultural improvement can protect farmers from risks associated with a changing climate

    The Role of RaxST, a Prokaryotic Sulfotransferase, and RaxABC, a Putative Type I Secretion System, in Activation of the Rice XA21-Mediated Immune Response

    Get PDF
    Tyrosine sulfation is an important posttranslational modification that determines the outcome of serious diseases in plants and animals. We have recently demonstrated that the plant pathogen Xanthomonas oryzae pv. oryzae (Xoo) carries a functional sulfotransferase (RaxST). raxST is required for activation of rice Xa21-mediated immunity indicating the critical, but unknown, function of raxST in mediating the Xoo/rice interaction. The raxST gene resides in the same operon (raxSTAB) as components of a predicted type I secretion and processing system (RaxA and RaxB). These observations suggest a model where RaxST sulfates a molecule that contains a leader peptide, which is cleaved by the peptidase domain of the RaxB protein and secreted outside the bacterial cell by the RaxABC T1SS

    Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice

    Get PDF
    Glycolate oxidase (GLO) is a key enzyme in photorespiration, catalyzing the oxidation of glycolate to glyoxylate. Arabidopsis GLO is required for nonhost defense responses to Pseudomonas syringae and for tobacco Pto/AvrPto-mediated defense responses. We previously described identification of rice GLO1 that interacts with a glutaredoxin protein, which in turn interacts with TGA transcription factors. TGA transcription factors are well known to participate in NPR1/NH1-mediated defense signaling, which is crucial to systemic acquired resistance in plants. Here we demonstrate that reduction of rice GLO1 expression leads to enhanced resistance to Xanthomonas oryzae pv oryzae (Xoo). Constitutive silencing of GLO1 leads to programmed cell death, resulting in a lesion-mimic phenotype and lethality or reduced plant growth and development, consistent with previous reports. Inducible silencing of GLO1, employing a dexamethasone-GVG (Gal4 DNA binding domain-VP16 activation domain-glucocorticoid receptor fusion) inducible system, alleviates these detrimental effects. Silencing of GLO1 results in enhanced resistance to Xoo, increased expression of defense regulators NH1, NH3, and WRKY45, and activation of PR1 expression

    Phylogenomics databases for facilitating functional genomics in rice

    Get PDF
    The completion of whole genome sequence of rice (Oryza sativa) has significantly accelerated functional genomics studies. Prior to the release of the sequence, only a few genes were assigned a function each year. Since sequencing was completed in 2005, the rate has exponentially increased. As of 2014, 1,021 genes have been described and added to the collection at The Overview of functionally characterized Genes in Rice online database (OGRO). Despite this progress, that number is still very low compared with the total number of genes estimated in the rice genome. One limitation to progress is the presence of functional redundancy among members of the same rice gene family, which covers 51.6 % of all non-transposable element-encoding genes. There remain a significant portion or rice genes that are not functionally redundant, as reflected in the recovery of loss-of-function mutants. To more accurately analyze functional redundancy in the rice genome, we have developed a phylogenomics databases for six large gene families in rice, including those for glycosyltransferases, glycoside hydrolases, kinases, transcription factors, transporters, and cytochrome P450 monooxygenases. In this review, we introduce key features and applications of these databases. We expect that they will serve as a very useful guide in the post-genomics era of research

    A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts

    Get PDF
    BACKGROUND: Transient assays using protoplasts are ideal for processing large quantities of genetic data coming out of hi-throughput assays. Previously, protoplasts have routinely been prepared from dicot tissue or cell suspension cultures and yet a good system for rice protoplast isolation and manipulation is lacking. RESULTS: We have established a rice seedling protoplast system designed for the rapid characterization of large numbers of genes. We report optimized methods for protoplast isolation from 7–14 day old etiolated rice seedlings. We show that the reporter genes luciferase GL2 and GUS are maximally expressed approximately 20 h after polyethylene glycol (PEG)-mediated transformation into protoplasts. In addition we found that transformation efficiency varied significantly with plasmid size. Five micrograms of a 4.5 kb plasmid resulted in 60–70% transformation efficiency. In contrast, using 50 μg of a 12 kb plasmid we obtained a maximum of 25–30% efficiency. We also show that short interfering RNAs (siRNAs) can be used to silence exogenous genes quickly and efficiently. An siRNA targeting luciferase resulted in a significant level of silencing after only 3 hours and up to an 83% decrease in expression. We have also isolated protoplasts from cells prepared from fully green tissue. These green tissue-derived protoplasts can be transformed to express high levels of luciferase activity and should be useful for assaying light sensitive cellular processes. CONCLUSION: We report a system for isolation, transformation and gene silencing of etiolated rice leaf and stem-derived protoplasts. Additionally, we have extended the technology to protoplasts isolated from fully green tissue. The protoplast system will bridge the gap between hi-throughput assays and functional biology as it can be used to quickly study large number of genes for which the function is unknown

    An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Xanthomonas oryzae </it>pv. <it>oryzae</it>, the causal agent of bacterial blight disease, is a serious pathogen of rice. Here we describe a fluorescent marker system to study virulence and pathogenicity of <it>X. oryzae </it>pv. <it>oryzae</it>.</p> <p>Results</p> <p>A fluorescent <it>X. oryzae </it>pv. <it>oryzae </it>Philippine race 6 strain expressing green fluorescent protein (GFP) (PXO99<sub>GFP</sub>) was generated using the <it>gfp </it>gene under the control of the neomycin promoter in the vector, pP<it>neo</it>-<it>gfp</it>. The PXO99<sub>GFP</sub>strain displayed identical virulence and avirulence properties as the wild type control strain, PXO99. Using fluorescent microscopy, bacterial multiplication and colonization were directly observed in rice xylem vessels. Accurate and rapid determination of bacterial growth was assessed using fluoremetry and an Enzyme-Linked ImmunoSorbant Assay (ELISA).</p> <p>Conclusion</p> <p>Our results indicate that the fluorescent marker system is useful for assessing bacterial infection and monitoring bacterial multiplication <it>in planta</it>.</p

    Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    Get PDF
    Glycoside hydrolases (GH) catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/). This database integrates multiple data types including the structural features, orthologous relationships, mutant availability, and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification

    \u3ci\u3eSUB1A\u3c/i\u3e-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway

    Get PDF
    Submergence 1A (SUB1A), is an ethylene response factor (ERF) that confers submergence tolerance in rice (Oryza sativa) via limiting shoot elongation during the inundation period. SUB1A has been proposed to restrict shoot growth by modulating gibberellic acid (GA) signaling. Our transcriptome analysis indicated that SUB1A differentially regulates genes associated with brassinosteroid (BR) synthesis during submergence. Consistent with the gene expression data, the SUB1A genotype had higher brassinosteroid levels after submergence compared to the intolerant genotype. Tolerance to submergence can be activated in the intolerant genotype by pretreatment with exogenous brassinolide, which results in restricted shoot elongation during submergence. BR induced a GA catabolic gene, resulting in lower GA levels in SUB1A plants. BR treatment also induced the DELLA protein SLR1, a known repressor of GA responses such as shoot elongation. We propose that BR limits GA levels during submergence in the SUB1A rice through a GA catabolic enzyme as part of an early response and may repress GA responses by inducing SLR1 after several days of submergence. Our results suggest that BR biosynthesis is regulated in a SUB1A-dependent manner during submergence and is involved in modulating the GA signaling and homeostasis

    The Rice Oligonucleotide Array Database: an atlas of rice gene expression

    Full text link
    BACKGROUND: Microarray technologies facilitate high-throughput gene expression analysis. However, the diversity of platforms for rice gene expression analysis hinders efficient analysis. Tools to broadly integrate microarray data from different platforms are needed. RESULTS: In this study, we developed the Rice Oligonucleotide Array Database (ROAD,http://www.ricearray.org) to explore gene expression across 1,867 publicly available rice microarray hybridizations. The ROAD’s user-friendly web interface and variety of visualization tools facilitate the extraction of gene expression profiles using gene and microarray element identifications. The ROAD supports meta-analysis of genes expressed in different tissues and at developmental stages. Co-expression analysis tool provides information on co-regulation between genes under general, abiotic and biotic stress conditions. Additionally, functional analysis tools, such as Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology, are embedded in the ROAD. These tools facilitate the identification of meaningful biological patterns in a list of query genes. CONCLUSIONS: The Rice Oligonucleotide Array Database provides comprehensive gene expression profiles for all rice genes, and will be a useful resource for researchers of rice and other grass species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1939-8433-5-17) contains supplementary material, which is available to authorized users
    • …
    corecore