2,012 research outputs found

    THE DYNAMIC MATURATIVE MODEL FOR ATTACHMENT

    Get PDF
    The Dynamic-Maturation Model (DMM) was developed by Patricia Crittenden (1-4), which focused its studies on attachment to different ethnic, socio-cultural and dangers as families in which episodes of Maltreatment and abuse or families with high psychosocial risk. Crittenden proposes new protocols of the Strange Situation (SS) and the Adult Attachment Interview (AAI) based on a coding and classification system derived from the model proposed by Ainsworth, but modified and enriched with that of Main, Goldwyn and Hesse. The SS procedure, adopted for children aged between 10 and 18 months, is valid until all preschool age, assuming This way the name of the Preschool Assessment of Attachment (PAA)

    GATA3 induces mitochondrial biogenesis in primary human CD4+ T cells during DNA damage

    Get PDF
    GATA3 is as a lineage-specific transcription factor that drives the differentiation of CD4+ T helper 2 (Th2) cells, but is also involved in a variety of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. Here we show a mechanism utilised by CD4+ T cells to increase mitochondrial mass in response to DNA damage through the actions of GATA3 and AMPK. Activated AMPK increases expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1α protein) at the level of transcription and GATA3 at the level of translation, while DNA damage enhances expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2). PGC1α, GATA3 and NRF2 complex together with the ATR to promote mitochondrial biogenesis. These findings extend the pleotropic interactions of GATA3 and highlight the potential for GATA3-targeted cell manipulation for intervention in CD4+ T cell viability and function after DNA damage

    Cardiac cycle efficiency as prognostic index in ICUs

    Get PDF
    We implement a beam steering system based on a directly-modulated unseeded R-SOA, allowing the distribution of 2.4 GHz 64QAM OFDMA signals with 2048-subcarriers satisfying IEEE 802.16e specifications

    Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study

    Get PDF
    PURPOSE: Ventricular–arterial (V–A) decoupling decreases myocardial efficiency and is exacerbated by tachycardia that increases static arterial elastance (Ea). We thus investigated the effects of heart rate (HR) reduction on Ea in septic shock patients using the beta-blocker esmolol. We hypothesized that esmolol improves Ea by positively affecting the tone of arterial vessels and their responsiveness to HR-related changes in stroke volume (SV). METHODS: After at least 24 h of hemodynamic optimization, 45 septic shock patients, with an HR ≥95 bpm and requiring norepinephrine to maintain mean arterial pressure (MAP) ≥65 mmHg, received a titrated esmolol infusion to maintain HR between 80 and 94 bpm. Ea was calculated as MAP/SV. All measurements, including data from right heart catheterization, echocardiography, arterial waveform analysis, and norepinephrine requirements, were obtained at baseline and at 4 h after commencing esmolol. RESULTS: Esmolol reduced HR in all patients and this was associated with a decrease in Ea (2.19 ± 0.77 vs. 1.72 ± 0.52 mmHg l−1), arterial dP/dtmax (1.08 ± 0.32 vs. 0.89 ± 0.29 mmHg ms−1), and a parallel increase in SV (48 ± 14 vs. 59 ± 18 ml), all p < 0.05. Cardiac output and ejection fraction remained unchanged, whereas norepinephrine requirements were reduced (0.7 ± 0.7 to 0.58 ± 0.5 µg kg−1 min−1, p < 0.05). CONCLUSIONS: HR reduction with esmolol effectively improved Ea while allowing adequate systemic perfusion in patients with severe septic shock who remained tachycardic despite standard volume resuscitation. As Ea is a major determinant of V–A coupling, its reduction may contribute to improving cardiovascular efficiency in septic shock

    A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments

    Get PDF
    The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS

    A systematic review of the evidence for single stage and two stage revision of infected knee replacement

    Get PDF
    BACKGROUND: Periprosthetic infection about the knee is a devastating complication that may affect between 1% and 5% of knee replacement. With over 79 000 knee replacements being implanted each year in the UK, periprosthetic infection (PJI) is set to become an important burden of disease and cost to the healthcare economy. One of the important controversies in treatment of PJI is whether a single stage revision operation is superior to a two-stage procedure. This study sought to systematically evaluate the published evidence to determine which technique had lowest reinfection rates. METHODS: A systematic review of the literature was undertaken using the MEDLINE and EMBASE databases with the aim to identify existing studies that present the outcomes of each surgical technique. Reinfection rate was the primary outcome measure. Studies of specific subsets of patients such as resistant organisms were excluded. RESULTS: 63 studies were identified that met the inclusion criteria. The majority of which (58) were reports of two-stage revision. Reinfection rated varied between 0% and 41% in two-stage studies, and 0% and 11% in single stage studies. No clinical trials were identified and the majority of studies were observational studies. CONCLUSIONS: Evidence for both one-stage and two-stage revision is largely of low quality. The evidence basis for two-stage revision is significantly larger, and further work into direct comparison between the two techniques should be undertaken as a priority

    Algorithm for identifying and separating beats from arterial pulse records

    Get PDF
    BACKGROUND: This project was designed as an epidemiological aid-selecting tool for a small country health center with the general objective of screening out possible coronary patients. Peripheral artery function can be non-invasively evaluated by impedance plethysmography. Changes in these vessels appear as good predictors of future coronary behavior. Impedance plethysmography detects volume variations after simple occlusive maneuvers that may show indicative modifications in arterial/venous responses. Averaging of a series of pulses is needed and this, in turn, requires proper determination of the beginning and end of each beat. Thus, the objective here is to describe an algorithm to identify and separate out beats from a plethysmographic record. A secondary objective was to compare the output given by human operators against the algorithm. METHODS: The identification algorithm detected the beat's onset and end on the basis of the maximum rising phase, the choice of possible ventricular systolic starting points considering cardiac frequency, and the adjustment of some tolerance values to optimize the behavior. Out of 800 patients in the study, 40 occlusive records (supradiastolic- subsystolic) were randomly selected without any preliminary diagnosis. Radial impedance plethysmographic pulse and standard ECG were recorded digitizing and storing the data. Cardiac frequency was estimated with the Power Density Function and, thereafter, the signal was derived twice, followed by binarization of the first derivative and rectification of the second derivative. The product of the two latter results led to a weighing signal from which the cycles' onsets and ends were established. Weighed and frequency filters are needed along with the pre-establishment of their respective tolerances. Out of the 40 records, 30 seconds strands were randomly chosen to be analyzed by the algorithm and by two operators. Sensitivity and accuracy were calculated by means of the true/false and positive/negative criteria. Synchronization ability was measured through the coefficient of variation and the median value of correlation for each patient. These parameters were assessed by means of Friedman's ANOVA and Kendall Concordance test. RESULTS: Sensitivity was 97% and 91% for the two operators, respectively, while accuracy was cero for both of them. The synchronism variability analysis was significant (p < 0.01) for the two statistics, showing that the algorithm produced the best result. CONCLUSION: The proposed algorithm showed good performance as expressed by its high sensitivity. The correlation analysis demonstrated that, from the synchronism point of view, the algorithm performed the best detection. Patients with marked arrhythmic processes are not good candidates for this kind of analysis. At most, they would be singled out by the algorithm and, thereafter, to be checked by an operator
    • …
    corecore