2,837 research outputs found

    Multi-GPU maximum entropy image synthesis for radio astronomy

    Full text link
    The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 minutes, instead of 2.5 days that takes a sequential version on CPU.Comment: 11 pages, 13 figure

    A model of heart rate kinetics in response to exercise

    Full text link
    We present a mathematical model, in the form of two coupled ordinary differential equations, for the heart rate kinetics in response to exercise. Our heart rate model is an adaptation of the model of oxygen uptake kinetics of Stirling: a physiological justification for this adaptation, as well as the physiological basis of our heart rate model is provided. We also present the optimal fit of the heart rate model to a set of raw un averaged data for multiple constant intensity exercises for an individual at a particular level of fitness

    First order phase transition in the anisotropic quantum orbital compass model

    Get PDF
    We investigate the anisotropic quantum orbital compass model on an infinite square lattice by means of the infinite projected entangled-pair state algorithm. For varying values of the JxJ_x and JzJ_z coupling constants of the model, we approximate the ground state and evaluate quantities such as its expected energy and local order parameters. We also compute adiabatic time evolutions of the ground state, and show that several ground states with different local properties coexist at Jx=JzJ_x = J_z. All our calculations are fully consistent with a first order quantum phase transition at this point, thus corroborating previous numerical evidence. Our results also suggest that tensor network algorithms are particularly fitted to characterize first order quantum phase transitions.Comment: 4 pages, 3 figures, major revision with new result

    Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model

    Get PDF
    We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.Comment: 4 pages, 2 figures, published versio

    On Higher Derivatives as Constraints in Field Theory: a Geometric Perspective

    Full text link
    We formalize geometrically the idea that the (de Donder) Hamiltonian formulation of a higher derivative Lagrangian field theory can be constructed understanding the latter as a first derivative theory subjected to constraints.Comment: 7 page
    corecore