8 research outputs found
Modeling Neutrino-Induced Scale-Dependent Galaxy Clustering for Photometric Galaxy Surveys
The increasing statistical precision of photometric redshift surveys requires
improved accuracy of theoretical predictions for large-scale structure
observables to obtain unbiased cosmological constraints. In CDM
cosmologies, massive neutrinos stream freely at small cosmological scales,
suppressing the small-scale power spectrum. In massive neutrino cosmologies,
galaxy bias modeling needs to accurately relate the scale-dependent growth of
the underlying matter field to observed galaxy clustering statistics. In this
work, we implement a computationally efficient approximation of the
neutrino-induced scale-dependent bias (NISDB). Through simulated likelihood
analyses of Dark Energy Survey Year 3 (DESY3) and Legacy Survey of Space and
Time Year 1 (LSSTY1) synthetic data that contain an appreciable NISDB, we
examine the impact of linear galaxy bias and neutrino mass modeling choices on
cosmological parameter inference. We find model misspecification of the NISDB
approximation and neutrino mass models to decrease the constraining power of
photometric galaxy surveys and cause parameter biases in the cosmological
interpretation of future surveys. We quantify these biases and devise
mitigation strategies.Comment: 23 pages, 5 figure
Recommended from our members
Cosmology with the Roman Space Telescope: Synergies with the Rubin Observatory Legacy Survey of Space and Time
We explore synergies between the Nancy Grace Roman Space Telescope and the Vera Rubin Observatory's Legacy Survey of Space and Time (LSST). Specifically, we consider scenarios where the currently envisioned survey strategy for the Roman Space Telescope's High Latitude Survey (HLS reference), i.e. 2000 deg2 in four narrow photometric bands is altered in favour of a strategy of rapid coverage of the LSST area (to full LSST depth) in one band. We find that in only five months, a survey in the W-band can cover the full LSST survey area providing high-resolution imaging for >95 per cent of the LSST Year 10 gold galaxy sample. We explore a second, more ambitious scenario where the Roman Space Telescope spends 1.5 yr covering the LSST area. For this second scenario, we quantify the constraining power on dark energy equation-of-state parameters from a joint weak lensing and galaxy clustering analysis. Our survey simulations are based on the Roman Space Telescope exposure-time calculator and redshift distributions from the CANDELS catalogue. Our statistical uncertainties account for higher order correlations of the density field, and we include a wide range of systematic effects, such as uncertainties in shape and redshift measurements, and modelling uncertainties of astrophysical systematics, such as galaxy bias, intrinsic galaxy alignment, and baryonic physics. We find a significant increase in constraining power for the joint LSST + HLS wide survey compared to LSST Y10 (FoMHLSwide = 2.4 FoMLSST) and compared to LSST + HLS (FoMHLSwide = 5.5 FoMHLSref). © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation
This paper details the modeling pipeline and validates the baseline analysis choices of the DES Year 3 joint analysis of galaxy clustering and weak lensing (a so-called "32pt" analysis). These analysis choices include the specific combination of cosmological probes, priors on cosmological and systematics parameters, model parameterizations for systematic effects and related approximations, and angular scales where the model assumptions are validated. We run a large number of simulated likelihood analyses using synthetic data vectors to test the robustness of our baseline analysis. We demonstrate that the DES Year 3 modeling pipeline, including the calibrated scale cuts, is sufficiently accurate relative to the constraining power of the DES Year 3 analyses. Our systematics mitigation strategy accounts for astrophysical systematics, such as galaxy bias, intrinsic alignments, source and lens magnification, baryonic effects, and source clustering, as well as for uncertainties in modeling the matter power spectrum, reduced shear, and estimator effects. We further demonstrate excellent agreement between two independently-developed modeling pipelines, and thus rule out any residual uncertainties due to the numerical implementation...
Dark Energy Survey Year 3 results: Constraints on extensions to Λ CDM with weak lensing and galaxy clustering
We constrain six possible extensions to the Λ cold dark matter (CDM) model using measurements from the Dark Energy Survey's first three years of observations, alone and in combination with external cosmological probes. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data vectors and blind analyses of real data to validate the robustness of our results to astrophysical and modeling systematic errors. In many cases, constraining power is limited by the absence of theoretical predictions beyond the linear regime that are reliable at our required precision. The Λ CDM extensions are dark energy with a time-dependent equation of state, nonzero spatial curvature, additional relativistic degrees of freedom, sterile neutrinos with eV-scale mass, modifications of gravitational physics, and a binned σ8(z ) model which serves as a phenomenological probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find (wp,wa)=(-0.9 9-0.17+0.28,-0.9 ±1.2 ) at 68% confidence with zp=0.24 from the DES measurements alone, and (wp,wa)=(-1.0 3-0.03+0.04,-0. 4-0.3+0.4) with zp=0.21 for the combination of all data considered. Curvature constraints of Ωk=0.0009 ±0.0017 and effective relativistic species Neff=3.1 0-0.16+0.15 are dominated by external data, though adding DES information to external low-redshift probes tightens the Ωk constraints that can be made without cosmic microwave background observables by 20%. For massive sterile neutrinos, DES combined with external data improves the upper bound on the mass meff by a factor of 3 compared to previous analyses, giving 95% limits of (Δ Neff,meff)≤(0.28 ,0.20 eV ) when using priors matching a comparable Planck analysis. For modified gravity, we constrain changes to the lensing and Poisson equations controlled by functions Σ (k ,z )=Σ0ΩΛ(z )/ΩΛ ,0 and μ (k ,z )=μ0ΩΛ(z )/ΩΛ ,0, respectively, to Σ0=0. 6-0.5+0.4 from DES alone and (Σ0,μ0)=(0.04 ±0.05 ,0.0 8-0.19+0.21) for the combination of all data, both at 68% confidence. Overall, we find no significant evidence for physics beyond Λ CDM ...