20,015 research outputs found

    Bump-on-tail instability of twisted excitations in rotating cold atomic clouds

    Full text link
    We develop a kinetic theory for twisted density waves (phonons), carrying a finite amount of orbital angular momentum, in large magneto optical traps, where the collective processes due to the exchange of scattered photons are considered. Explicit expressions for the dispersion relation and for the kinetic (Landau) damping are derived and contributions from the orbital angular momentum are discussed. We show that for rotating clouds, exhibiting ring-shaped structures, phonons carrying orbital angular momentum can cross the instability threshold and grow out of noise, while the usual plane wave solutions are kinetically damped.Comment: 5 pages, 5 figure

    Dengue disease, basic reproduction number and control

    Get PDF
    Dengue is one of the major international public health concerns. Although progress is underway, developing a vaccine against the disease is challenging. Thus, the main approach to fight the disease is vector control. A model for the transmission of Dengue disease is presented. It consists of eight mutually exclusive compartments representing the human and vector dynamics. It also includes a control parameter (insecticide) in order to fight the mosquito. The model presents three possible equilibria: two disease-free equilibria (DFE) and another endemic equilibrium. It has been proved that a DFE is locally asymptotically stable, whenever a certain epidemiological threshold, known as the basic reproduction number, is less than one. We show that if we apply a minimum level of insecticide, it is possible to maintain the basic reproduction number below unity. A case study, using data of the outbreak that occurred in 2009 in Cape Verde, is presented.Comment: This is a preprint of a paper whose final and definitive form has appeared in International Journal of Computer Mathematics (2011), DOI: 10.1080/00207160.2011.55454

    The role of structural evolution on the quantum conductance behavior of gold nanowires during stretching

    Full text link
    Gold nanowires generated by mechanical stretching have been shown to adopt only three kinds of configurations where their atomic arrangements adjust such that either the [100], [111] or [110] zone axes lie parallel to the elongation direction. We have analyzed the relationship between structural rearrangements and electronic transport behavior during the elongation of Au nanowires for each of the three possibilities. We have used two independent experiments to tackle this problem, high resolution transmission high resolution electron microscopy to observe the atomic structure and a mechanically controlled break junction to measure the transport properties. We have estimated the conductance of nanowires using a theoretical method based on the extended H\"uckel theory that takes into account the atom species and their positions. Aided by these calculations, we have consistently connected both sets of experimental results and modeled the evolution process of gold nanowires whose conductance lies within the first and third conductance quanta. We have also presented evidence that carbon acts as a contaminant, lowering the conductance of one-atom-thick wires.Comment: 10 page

    Dynamical instabilities of a resonator driven by a superconducting single-electron transistor

    Full text link
    We investigate the dynamical instabilities of a resonator coupled to a superconducting single-electron transistor (SSET) tuned to the Josephson quasiparticle (JQP) resonance. Starting from the quantum master equation of the system, we use a standard semiclassical approximation to derive a closed set of mean field equations which describe the average dynamics of the resonator and SSET charge. Using amplitude and phase coordinates for the resonator and assuming that the amplitude changes much more slowly than the phase, we explore the instabilities which arise in the resonator dynamics as a function of coupling to the SSET, detuning from the JQP resonance and the resonator frequency. We find that the locations (in parameter space) and sizes of the limit cycle states predicted by the mean field equations agree well with numerical solutions of the full master equation for sufficiently weak SSET-resonator coupling. The mean field equations also give a good qualitative description of the set of dynamical transitions in the resonator state that occur as the coupling is progressively increased.Comment: 23 pages, 6 Figures, Accepted for NJ

    A systematic comparison of supervised classifiers

    Get PDF
    Pattern recognition techniques have been employed in a myriad of industrial, medical, commercial and academic applications. To tackle such a diversity of data, many techniques have been devised. However, despite the long tradition of pattern recognition research, there is no technique that yields the best classification in all scenarios. Therefore, the consideration of as many as possible techniques presents itself as an fundamental practice in applications aiming at high accuracy. Typical works comparing methods either emphasize the performance of a given algorithm in validation tests or systematically compare various algorithms, assuming that the practical use of these methods is done by experts. In many occasions, however, researchers have to deal with their practical classification tasks without an in-depth knowledge about the underlying mechanisms behind parameters. Actually, the adequate choice of classifiers and parameters alike in such practical circumstances constitutes a long-standing problem and is the subject of the current paper. We carried out a study on the performance of nine well-known classifiers implemented by the Weka framework and compared the dependence of the accuracy with their configuration parameter configurations. The analysis of performance with default parameters revealed that the k-nearest neighbors method exceeds by a large margin the other methods when high dimensional datasets are considered. When other configuration of parameters were allowed, we found that it is possible to improve the quality of SVM in more than 20% even if parameters are set randomly. Taken together, the investigation conducted in this paper suggests that, apart from the SVM implementation, Weka's default configuration of parameters provides an performance close the one achieved with the optimal configuration

    Irreducible actions and compressible modules

    Full text link
    Any finite set of linear operators on an algebra AA yields an operator algebra BB and a module structure on A, whose endomorphism ring is isomorphic to a subring ABA^B of certain invariant elements of AA. We show that if AA is a critically compressible left BB-module, then the dimension of its self-injective hull AA over the ring of fractions of ABA^B is bounded by the uniform dimension of AA and the number of linear operators generating BB. This extends a known result on irreducible Hopf actions and applies in particular to weak Hopf action. Furthermore we prove necessary and sufficient conditions for an algebra A to be critically compressible in the case of group actions, group gradings and Lie actions

    Generalization of Dirac Non-Linear Electrodynamics, and Spinning Charged Particles

    Full text link
    In this note we generalized the Dirac non-linear electrodynamics, by introducing two potentials (namely, the vector potential A and the pseudo-vector potential gamma^5 B of the electromagnetic theory with charges and magnetic monopoles) and by imposing the pseudoscalar part of the product omega.omega* to be zero, with omega = A + gamma^5 B. We show that the field equations of such a theory possess a soliton-like solution which can represent a priori a "charged particle", since it is endowed with a Coulomb field plus the field of a magnetic dipole. The rest energy of the soliton is finite, and the angular momentum stored in its electromagnetic field can be identified --for suitable choices of the parameters-- with the spin of the charged particle. Thus this approach seems to yield a classical model for the charged (spinning) particle, which does not meet the problems met by earlier attempts in the same direction.Comment: standard LaTeX file; 16 pages; it is a corrected version of a paper appeared in Found. Phys. (issue in honour of A.O.Barut) 23 (1993) 46
    • …
    corecore