22,249 research outputs found
New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions
We reveal universal dynamical scaling behavior across adiabatic quantum phase
transitions (QPTs) in networks ranging from traditional spatial systems (Ising
model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our
findings, which lie beyond traditional critical exponent analysis and adiabatic
perturbation approximations, are applicable even where excitations have not yet
stabilized and hence provide a time-resolved understanding of QPTs encompassing
a wide range of adiabatic regimes. We show explicitly that even though two
systems may traditionally belong to the same universality class, they can have
very different adiabatic evolutions. This implies more stringent conditions
need to be imposed than at present, both for quantum simulations where one
system is used to simulate the other, and for adiabatic quantum computing
schemes.Comment: 5 pages, 3 figures, plus supplementary material (6 pages, 1 figure
Large dynamic light-matter entanglement from driving neither too fast nor too slow
A significant problem facing next-generation quantum technologies is how to
generate and manipulate macroscopic entanglement in light and matter systems.
Here we report a new regime of dynamical light-matter behavior in which a
giant, system-wide entanglement is generated by varying the light-matter
coupling at \emph{intermediate} velocities. This enhancement is far larger and
broader-ranged than that occurring near the quantum phase transition of the
same model under adiabatic conditions. By appropriate choices of the coupling
within this intermediate regime, the enhanced entanglement can be made to
spread system-wide or to reside in each subsystem separately.Comment: 7 pages, 7 figure
Robust quantum correlations in out-of-equilibrium matter-light systems
High precision macroscopic quantum control in interacting light-matter
systems remains a significant goal toward novel information processing and
ultra-precise metrology. We show that the out-of-equilibrium behavior of a
paradigmatic light-matter system (Dicke model) reveals two successive stages of
enhanced quantum correlations beyond the traditional schemes of near-adiabatic
and sudden quenches. The first stage features magnification of matter-only and
light-only entanglement and squeezing due to effective non-linear
self-interactions. The second stage results from a highly entangled
light-matter state, with enhanced superradiance and signatures of chaotic and
highly quantum states. We show that these new effects scale up consistently
with matter system size, and are reliable even in dissipative environments.Comment: 14 pages, 6 figure
Quantum Hysteresis in Coupled Light-Matter Systems
We investigate the non-equilibrium quantum dynamics of a canonical
light-matter system, namely the Dicke model, when the light-matter interaction
is ramped up and down through a cycle across the quantum phase transition. Our
calculations reveal a rich set of dynamical behaviors determined by the cycle
times, ranging from the slow, near adiabatic regime through to the fast, sudden
quench regime. As the cycle time decreases, we uncover a crossover from an
oscillatory exchange of quantum information between light and matter that
approaches a reversible adiabatic process, to a dispersive regime that
generates large values of light-matter entanglement. The phenomena uncovered in
this work have implications in quantum control, quantum interferometry, as well
as in quantum information theory.Comment: 9 pages and 4 figure
Dynamics of Entanglement and the Schmidt Gap in a Driven Light-Matter System
The ability to modify light-matter coupling in time (e.g. using external
pulses) opens up the exciting possibility of generating and probing new aspects
of quantum correlations in many-body light-matter systems. Here we study the
impact of such a pulsed coupling on the light-matter entanglement in the Dicke
model as well as the respective subsystem quantum dynamics. Our dynamical
many-body analysis exploits the natural partition between the radiation and
matter degrees of freedom, allowing us to explore time-dependent
intra-subsystem quantum correlations by means of squeezing parameters, and the
inter-subsystem Schmidt gap for different pulse duration (i.e. ramping
velocity) regimes -- from the near adiabatic to the sudden quench limits. Our
results reveal that both types of quantities indicate the emergence of the
superradiant phase when crossing the quantum critical point. In addition, at
the end of the pulse light and matter remain entangled even though they become
uncoupled, which could be exploited to generate entangled states in
non-interacting systems.Comment: 15 pages, 4 figures, Accepted for publication in Journal of Physics
B, special issue Correlations in light-matter interaction
Deep into the Water Fountains: The case of IRAS 18043-2116
(Abridged) The formation of large-scale (hundreds to few thousands of AU)
bipolar structures in the circumstellar envelopes (CSEs) of post-Asymptotic
Giant Branch (post-AGB) stars is poorly understood. The shape of these
structures, traced by emission from fast molecular outflows, suggests that the
dynamics at the innermost regions of these CSEs does not depend only on the
energy of the radiation field of the central star. Deep into the Water
Fountains is an observational project based on the results of programs carried
out with three telescope facilities: The Karl G. Jansky Very Large Array
(JVLA), The Australia Telescope Compact Array (ATCA), and the Very Large
Telescope (SINFONI-VLT). Here we report the results of the observations towards
the WF nebula IRAS 180432116: Detection of radio continuum emission in the
frequency range 1.5GHz - 8.0GHz; HO maser spectral features and radio
continuum emission detected at 22GHz, and H ro-vibrational emission lines
detected at the near infrared. The high-velocity HO maser spectral
features, and the shock-excited H emission detected could be produced in
molecular layers which are swept up as a consequence of the propagation of a
jet-driven wind. Using the derived H column density, we estimated a
molecular mass-loss rate of the order of Myr. On the
other hand, if the radio continuum flux detected is generated as a consequence
of the propagation of a thermal radio jet, the mass-loss rate associated to the
outflowing ionized material is of the order of 10Myr.
The presence of a rotating disk could be a plausible explanation for the
mass-loss rates estimated.Comment: 10 pages, 5 figures. Accepted for publication in A&
Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities
In the present paper we introduce a way of identifying quantum phase
transitions of many-body systems by means of local time correlations and
Leggett-Garg inequalities. This procedure allows to experimentally determine
the quantum critical points not only of finite-order transitions but also those
of infinite order, as the Kosterlitz-Thouless transition that is not always
easy to detect with current methods. By means of simple analytical arguments
for a general spin- Hamiltonian, and matrix product simulations of
one-dimensional and anisotropic models, we argue that
finite-order quantum phase transitions can be determined by singularities of
the time correlations or their derivatives at criticality. The same features
are exhibited by corresponding Leggett-Garg functions, which noticeably
indicate violation of the Leggett-Garg inequalities for early times and all the
Hamiltonian parameters considered. In addition, we find that the infinite-order
transition of the model at the isotropic point can be revealed by the
maximal violation of the Leggett-Garg inequalities. We thus show that quantum
phase transitions can be identified by purely local measurements, and that
many-body systems constitute important candidates to observe experimentally the
violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys.
Rev.
- …