1,172 research outputs found
Structure and Dynamics of amorphous Silica Surfaces
We use molecular dynamics computer simulations to study the equilibrium
properties of the surface of amorphous silica. Two types of geometries are
investigated: i) clusters with different diameters (13.5\AA, 19\AA, and
26.5\AA) and ii) a thin film with thickness 29\AA. We find that the shape of
the clusters is independent of temperature and that it becomes more spherical
with increasing size. The surface energy is in qualitative agreement with the
experimental value for the surface tension. The density distribution function
shows a small peak just below the surface, the origin of which is traced back
to a local chemical ordering at the surface. Close to the surface the partial
radial distribution functions as well as the distributions of the bond-bond
angles show features which are not observed in the interior of the systems. By
calculating the distribution of the length of the Si-O rings we can show that
these additional features are related to the presence of two-membered rings at
the surface. The surface density of these structures is around 0.6/nm^2 in good
agreement with experimental estimates. From the behavior of the mean-squared
displacement at low temperatures we conclude that at the surface the cage of
the particles is larger than the one in the bulk. Close to the surface the
diffusion constant is somewhat larger than the one in the bulk and with
decreasing temperature the relative difference grows. The total vibrational
density of states at the surface is similar to the one in the bulk. However, if
only the one for the silicon atoms is considered, significant differences are
found.Comment: 30 pages of Latex, 16 figure
A robot trace maker: modeling the fossil evidence of early invertebrate behavior.
The study of trace fossils, the fossilized remains of animal behavior, reveals interesting parallels with recent research in behavior-based robotics. This article reports robot simulations of the meandering foraging trails left by early invertebrates that demonstrate that such trails can be generated by mechanisms similar to those used for robot wall-following. We conclude with the suggestion that the capacity for intelligent behavior shown by many behavior-based robots is similar to that of animals of the late Precambrian and early Cambrian periods approximately 530 to 565 million years ago
Transport Properties of the One Dimensional Ferromagnetic Kondo Lattice Model : A Qualitative Approach to Oxide Manganites
The transport properties of the ferromagnetic Kondo lattice model in one
dimension are studied via bosonization methods. The antiferromagnetic
fluctuations, which normally appear because of the RKKY interactions, are
explicitly taken into account as a direct exchange between the ``core'' spins.
It is shown that in the paramagnetic regime with the local antiferromagnetic
fluctuations, the resistivity decays exponentially as the temperature increases
while in the ferromagnetic regime the system is an almost perfect conductor. %A
non-perturbative description of localized spin polarons %in the paramagnetic
region is obtained.
The effect of a weak applied field is discussed to be reduced to the case of
the ferromagnetic state leading to band splitting. The qualitative relevance of
the results for the problem of the Oxide Manganites is emphasized.Comment: 4 pages, REVTe
On the Fermi Liquid to Polaron Crossover II: Double Exchange and the Physics of "Colossal" Magnetoresistance
We use the dynamical mean field method to study a model of electrons
Jahn-Teller coupled to localized classical oscillators and ferromagnetically
coupled to ``core spins'', which, we argue, contains the essential physics of
the ``colossal magnetoresistance'' manganites . We
determine the different regimes of the model and present results for the
temperature and frequency dependence of the conductivity, the electron spectral
function and the root mean square lattice parameter fluctuations. We compare
our results to data, and give a qualitative discussion of important physics not
included in the calculation. Extensive use is made of results from a companion
paper titled: ``On the Fermi Liquid to Polaron Crossover I: General Results''.Comment: 34 pages, 10 figures. Depends on previous paper titled "On the Fermi
Liquid to Poalron Crossover I: General Result
Approach to the metal-insulator transition in La(1-x)CaxMnO3 (0<x<.2): magnetic inhomogeneity and spin wave anomaly
We describe the evolution of the static and dynamic spin correlations of
LaCaMnO, for x=0.1, 0.125 and 0.2, where the system evolves
from the canted magnetic state towards the insulating ferromagnetic state,
approaching the metallic transition (x=0.22).
In the x=0.1 sample, the observation of two spin wave branches typical of two
distinct types of magnetic coupling, and of a modulation in the elastic diffuse
scattering characteristic of ferromagnetic inhomogeneities, confirms the static
and dynamic inhomogeneous features previously observed at x0.1. The
anisotropic q-dependence of the intensity of the low-energy spin wave suggests
a bidimensionnal character for the static inhomogeneities. At x=0.125, which
corresponds to the occurence of a ferromagnetic and insulating state, the two
spin wave branches reduce to a single one, but anisotropic. At this
concentration, an anomaly appears at {\bf q}=(1.25,1.25,0), that could be
related to an underlying periodicity, as arising from (1.5,1.5,0)
superstructures.
At x=0.2, the spin-wave branch is isotropic. In addition to the anomaly
observed at q, extra magnetic excitations are observed at larger q, forming
an optical branch. The two dispersion curves suggest an anti-crossing behavior
at some {\bf q'} value, which could be explained by a folding due to an
underlying perodicity involving four cubic lattice spacings
Glass Transition in the Polaron Dynamics of CMR Manganites
Neutron scattering measurements on a bilayer manganite near optimal doping
show that the short-range polarons correlations are completely dynamic at high
T, but then freeze upon cooling to a temperature T* 310 K. This glass
transition suggests that the paramagnetic/insulating state arises from an
inherent orbital frustration that inhibits the formation of a long range
orbital- and charge-ordered state. Upon further cooling into the
ferromagnetic-metallic state (Tc=114 K), where the polarons melt, the diffuse
scattering quickly develops into a propagating, transverse optic phonon.Comment: 4 pages, 4 figures. Physical Review Letters (in Press
Fermions and Disorder in Ising and Related Models in Two Dimensions
The aspects of phase transitions in the two-dimensional Ising models modified
by quenched and annealed site disorder are discussed in the framework of
fermionic approach based on the reformulation of the problem in terms of
integrals with anticommuting Grassmann variables.Comment: 11 pages, 1 table, no figures. The discussion is merely based on a
talk given at the International Bogoliubov Conference on Problems of
Theoretical and Mathematical Physics, MIRAS--JINR, Moscow--Dubna, Russia,
August 21--27, 200
Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy
The effect of high-temperature high-pressure annealing on the residual strain, bending, and point defect redistribution of freestanding hydride vapor phase epitaxial GaN films was studied. The bending was found to be determined by the difference in the in-plane lattice parameters in the two faces of the films. The results showed a tendency of equalizing the lattice parameters in the two faces with increasing annealing temperature, leading to uniform strain distribution across the film thickness. A nonmonotonic behavior of structural parameters with increasing annealing temperature was revealed and related to the change in the point defect content under the high-temperature treatment.Peer reviewe
A Weyl-Dirac Cosmological Model with DM and DE
In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is
considered. It is assumed that the space-time of the universe has a chaotic
Weylian microstructure but is described on a large scale by Riemannian
geometry. Locally fields of the Weyl connection vector act as creators of
massive bosons having spin 1. It is suggested that these bosons, called
weylons, provide most of the dark matter in the universe. At the beginning the
universe is a spherically symmetric geometric entity without matter. Primary
matter is created by Dirac's gauge function very close to the beginning. In the
early epoch, when the temperature of the universe achieves its maximum,
chaotically oriented Weyl vector fields being localized in micro-cells create
weylons. In the dust dominated period Dirac's gauge function is giving rise to
dark energy, the latter causing the cosmic acceleration at present. This
oscillatory universe has an initial radius identical to the Plank length =
1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm,
while its maximum value is 8.54 exp (28) cm. All forms of matter are created by
geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR
Ising model on 3D random lattices: A Monte Carlo study
We report single-cluster Monte Carlo simulations of the Ising model on
three-dimensional Poissonian random lattices with up to 128,000 approx. 503
sites which are linked together according to the Voronoi/Delaunay prescription.
For each lattice size quenched averages are performed over 96 realizations. By
using reweighting techniques and finite-size scaling analyses we investigate
the critical properties of the model in the close vicinity of the phase
transition point. Our random lattice data provide strong evidence that, for the
available system sizes, the resulting effective critical exponents are
indistinguishable from recent high-precision estimates obtained in Monte Carlo
studies of the Ising model and \phi^4 field theory on three-dimensional regular
cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure
- …
