7,543 research outputs found
ORGANIZATIONAL COMMITMENT AS MEDIATOR VARIABLES ON THE RELATIONSHIP BETWEEN ORGANIZATIONAL JUSTICE AND TURNOVER INTENT
Current research conducted with two main concerns, first, to investigate the effect of distributive and procedural justice on turnover intent. And second, to examine the roles of affective, continuance and normative organizational
commitment as the mediator variables on the effects of distributive and procedural justice on turnover intent. One-hundred-and-fifty-five employees from a public organization located in Bengkulu Province participated
voluntarily as the respondents. Three steps Mediated Regression Analysis (MDA) applied to test the hypotheses. As expected, Distributive justice and procedural justice negatively affect the turnover intent. In addition, the effect of distributive justice on turnover intent mediated by affective and normative organizational commitment. The effect of procedural justice is mediated by affective, continuance, and normative organizational commitment
Differential expression analysis for sequence count data
*Motivation:* High-throughput nucleotide sequencing provides quantitative readouts in assays for RNA expression (RNA-Seq), protein-DNA binding (ChIP-Seq) or cell counting (barcode sequencing). Statistical inference of differential signal in such data requires estimation of their variability throughout the dynamic range. When the number of replicates is small, error modelling is needed to achieve statistical power.

*Results:* We propose an error model that uses the negative binomial distribution, with variance and mean linked by local regression, to model the null distribution of the count data. The method controls type-I error and provides good detection power. 

*Availability:* A free open-source R software package, _DESeq_, is available from the Bioconductor project and from "http://www-huber.embl.de/users/anders/DESeq":http://www-huber.embl.de/users/anders/DESeq
Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition
The traditional contour method maps a single
component of residual stress by cutting a body carefully in
two and measuring the contour of the cut surface. The cut also
exposes previously inaccessible regions of the body to
residual stress measurement using a variety of other techniques,
but the stresses have been changed by the relaxation
after cutting. In this paper, it is shown that superposition of
stresses measured post-cutting with results from the contour
method analysis can determine the original (pre-cut) residual
stresses. The general superposition theory using Bueckner’s
principle is developed and limitations are discussed. The
procedure is experimentally demonstrated by determining the
triaxial residual stress state on a cross section plane. The 2024-
T351 aluminum alloy test specimen was a disk plastically
indented to produce multiaxial residual stresses. After cutting
the disk in half, the stresses on the cut surface of one half were
determined with X-ray diffraction and with hole drilling on
the other half. To determine the original residual stresses, the
measured surface stresses were superimposed with the change
stress calculated by the contour method. Within uncertainty,
the results agreed with neutron diffraction measurements
taken on an uncut disk
Epipelagic mesozooplankton distribution and abundance over the Mascarene Plateau and Basin, south-western Indian Ocean
The crescent shaped Mascarene Plateau (southwestern Indian Ocean), some 2200 km in length, forms a partial barrier to the (predominantly westward) flow of the South Equatorial Current. Shallow areas of the Mascarene Plateau effectively form a large shelf sea without an associated coastline. Zooplankton sampling transects were made across the plateau and also the basin to the west, to investigate the role the partial interruption of flow has on zooplankton biomass and community structure over the region. Biomass data from Optical Plankton Counter (OPC) analysis, and variability in community structure from taxonomic analysis, appear to indicate that the obstruction by the plateau causes upwelling, nutrient enrichment and enhanced chlorophyll and secondary production levels downstream.
The Mascarene Basin is clearly distinguishable from the ridge itself, and from the waters to the south and north, both in terms of size-distributed zooplankton biomass and community structure. Satellite remote sensing data, particularly remotely-sensed ocean colour imagery and the sea surface height anomaly (SSHA), indicate support for this hypothesis. A correlation was found between OPC biovolume and SSHA and sea surface temperature (SST), which may indicate the physical processes driving mesozooplankton variability in this area. Biomass values away from the influence of the ridge averaged 24 mg m-3, but downstream if the ridge biomass averaged 263 mg m-3. Copepods comprised 60% of the mean total organisms. Calanoid copepods varied considerably between regions, being lowest away from the influence of the plateau, where higher numbers of the cyclopoid copepods Oithona spp., Corycaeus spp. and Oncaea spp., and the harpacticoid Microsetella spp. were found
Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy
Hepatic encephalopathy (HE) is a frequent and serious complication of both chronic liver disease and acute liver failure. HE manifests as a wide spectrum of neuropsychiatric abnormalities, from subclinical changes (mild cognitive impairment) to marked disorientation, confusion and coma. The clinical and economic burden of HE is considerable, and it contributes greatly to impaired quality of life, morbidity and mortality. This review will critically discuss the latest classification of HE, as well as the pathogenesis and pathophysiological pathways underlying the neurological decline in patients with end-stage liver disease. In addition, management strategies, diagnostic approaches, currently available therapeutic options and novel treatment strategies are discussed
On Semiclassical Limits of String States
We explore the relation between classical and quantum states in both open and
closed (super)strings discussing the relevance of coherent states as a
semiclassical approximation. For the closed string sector a gauge-fixing of the
residual world-sheet rigid translation symmetry of the light-cone gauge is
needed for the construction to be possible. The circular target-space loop
example is worked out explicitly.Comment: 12 page
Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient
Background: Investigation of the functioning of the brain in living systems
has been a major effort amongst scientists and medical practitioners. Amongst
the various disorder of the brain, epilepsy has drawn the most attention
because this disorder can affect the quality of life of a person. In this paper
we have reinvestigated the EEGs for normal and epileptic patients using
surrogate analysis, probability distribution function and Hurst exponent.
Results: Using random shuffled surrogate analysis, we have obtained some of
the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev
E 2001, 64:061907], for the epileptic patients during seizure. Probability
distribution function shows that the activity of an epileptic brain is
nongaussian in nature. Hurst exponent has been shown to be useful to
characterize a normal and an epileptic brain and it shows that the epileptic
brain is long term anticorrelated whereas, the normal brain is more or less
stochastic. Among all the techniques, used here, Hurst exponent is found very
useful for characterization different cases.
Conclusions: In this article, differences in characteristics for normal
subjects with eyes open and closed, epileptic subjects during seizure and
seizure free intervals have been shown mainly using Hurst exponent. The H shows
that the brain activity of a normal man is uncorrelated in nature whereas,
epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis,
Hurst exponent. 9 page
Organic aerosol formation downwind from the Deepwater Horizon oil spill.
A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons
- …