1,523 research outputs found

    Impact of Hurricane Katrina on the Coastal Systems of Southern Louisiana

    Get PDF
    Natural disasters, such as hurricanes and forest fires, could trigger collapse and reorganization of social-ecological systems. In the face of external perturbations, a resilient system would have capacity to absorb impacts, adapt to change, learn, and if needed, reorganize within the same regime. Within this context, we asked how human and natural systems in Louisiana responded to Hurricane Katrina, and how the natural disaster altered the status of these systems. This paper discusses community resilience to natural hazards and addresses the limitations for assessing disaster resilience. Furthermore, we assessed social and environmental change in New Orleans and southern Louisiana through both a spatial and temporal lens (i.e., pre- and post-Katrina). By analyzing changes in system condition using social, economic and environmental factors, we identified some of the characteristics of the system’s reorganization trajectories. Our results suggest that although the ongoing population recovery may be a sign of revitalization, the city and metropolitan area continue to face socioeconomic inequalities and environmental vulnerability to natural disasters. Further, the spatial distribution of social-ecological condition over time reveals certain levels of change and reorganization after Katrina, but the reorganization did not translate into greater equity. This effort presents an enhanced approach to assessing social-ecological change pre and post disturbance and provides a way forward for characterizing pertinent aspects of disaster resilience

    The role of rare avian species for spatial resilience of shifting biomes in the Great Plains of North America

    Get PDF
    Human activity causes biome shifts that alter biodiversity and spatial resilience patterns. Rare species, often considered vulnerable to change and endangered, can be a critical element of resilience by providing adaptive capacity in response to disturbances. However, little is known about changes in rarity patterns of communities once a biome transitions into a novel spatial regime. We used time series modeling to identify rare avian species in an expanding terrestrial (southern) spatial regime in the North American Great Plains and another (northern) regime that will become encroached by the southern regime in the near future. In this time-explicit approach, presumably rare species show stochastic dynamics in relative abundance – this is because they occur only rarely throughout the study period, may largely be absent but show occasional abundance peaks or show a combination of these patterns. We specifically assessed how stochastic/rare species of the northern spatial regime influence aspects of ecological resilience once it has been encroached by the southern regime. Using 47 years (1968–2014) of breeding bird survey data and a space-for-time substitution, we found that the overall contribution of stochastic/rare species to the avian community of the southern regime was low. Also, none of these species were of conservation concern, suggesting limited need for revised species conservation action in the novel spatial regime. From a systemic perspective, our results preliminarily suggest that stochastic/rare species only marginally contribute to resilience in a new spatial regime after fundamental ecological changes have occurred

    Effects of Practice on Competency In Single-Rescuer Cardiopulmonary Resuscitation

    Get PDF
    This study demonstrated the effectiveness of brief practice on voice advisory manikins in improving skill retention by nursing students in single-rescuer cardiopulmonary resuscitation (CPR). Brief practice can assist nurses and other providers in maintaining their CPR skills and may lead to improved performance competency

    How do ecological resilience metrics relate to community stability and collapse?

    Get PDF
    The concept of ecological resilience (the amount of disturbance a system can absorb before collapsing and reorganizing) holds potential for predicting community change and collapse—increasingly common issues in the Anthropocene. Yet neither the predictions nor metrics of resilience have received rigorous testing. The crossscale resilience model, a leading operationalization of resilience, proposes resilience can be quantified by the combination of diversity and redundancy of functions performed by species operating at different scales. Here, we use 48 years of sub-continental avian community data aggregated at multiple spatial scales to calculate resilience metrics derived from the cross-scale resilience model (i.e., cross-scale diversity, cross-scale redundancy, within-scale redundancy, and number of body mass aggregations) and test core predictions inherent to community persistence and change. Specifically, we ask how cross-scale resilience metrics relate community stability and collapse. We found low mean cross-correlation between species richness and cross-scale resilience metrics. Resilience metrics constrained the magnitude of community fluctuations over time (mean species turnover), but resilience metrics but did not influence variability of community fluctuations (variance in turnover). We show shifts in resilience metrics closely predict community collapse: shifts in cross-scale redundancy preceded abrupt changes in community composition, and shifts in cross-scale diversity synchronized with abrupt changes in community composition. However, we found resilience metrics only weakly relate to maintenance of particular species assemblages over time. Our results distinguish ecological resilience from ecological stability and allied concepts such as elasticity and resistance: we show communities may fluctuate widely yet still be resilient. Our findings also differentiate the roles of functional redundancy and diversity as metrics of resilience and reemphasize the importance of considering resilience metrics from a multivariate perspective. Finally, we support the contention that ecological stability is nested within ecological resilience: stability predicts the behavior of systems within an ecological regime, and resilience predicts the maintenance of regimes and behavior of systems collapsing into alternative regimes

    The Science of Open Spaces: Theory and Practice for Conserving Large, Complex Systems. Charles G. Curtin.

    Get PDF
    The phrase “open spaces,” may bring to mind expansive tracts of prairie, rangeland, or even desert, stretching lonely and unchanged to the horizon. Open spaces also could conjure open oceans or interstitial rural lands between urbanized hubs, dotted with farms, fields, and woodlands. In an abstract sense, open spaces could represent gaps in human understanding or blank spaces on a map. In his book The Science of Open Spaces, landscape ecologist Charles Curtin combines all these perspectives, expanding the definition of “open spaces” to multi-layered and multi-scaled complex systems that are “greater than the sum of their parts.” He populates these vastnesses with the diversity of species, hierarchy of biotic and abiotic interactions, and human social elements that comprise and link open spaces together as social-ecological systems. The Science of Open Spaces provides readers with a roadmap to 21st century land management, where the stakes are high, collaboration is crucial, and profound uncertainty in the face of the complexity often hampers decision-making

    Doublethink and scale mismatch polarize policies for an invasive tree

    Get PDF
    Mismatches between invasive species management policies and ecological knowledge can lead to profound societal consequences. For this reason, natural resource agencies have adopted the scientifically-based density-impact invasive species curve to guide invasive species management. We use the density-impact model to evaluate how well management policies for a native invader (Juniperus virginiana) match scientific guidelines. Juniperus virginiana invasion is causing a sub-continental regime shift from grasslands to woodlands in central North America, and its impacts span collapses in endemic diversity, heightened wildfire risk, and crashes in grazing land profitability. We (1) use land cover data to identify the stage of Juniperus virginiana invasion for three ecoregions within Nebraska, USA, (2) determine the range of invasion stages at individual land parcel extents within each ecoregion based on the density-impact model, and (3) determine policy alignment and mismatches relative to the density-impact model in order to assess their potential to meet sustainability targets and avoid societal impacts as Juniperus virginiana abundance increases. We found that nearly all policies evidenced doublethink and policy-ecology mismatches, for instance, promoting spread of Juniperus virginiana regardless of invasion stage while simultaneously managing it as a native invader in the same ecoregion. Like other invasive species, theory and literature for this native invader indicate that the consequences of invasion are unlikely to be prevented if policies fail to prioritize management at incipient invasion stages. Theory suggests a more realistic approach would be to align policy with the stage of invasion at local and ecoregion management scales. There is a need for scientists, policy makers, and ecosystem managers to move past ideologies governing native versus non-native invader classification and toward a framework that accounts for the uniqueness of native species invasions, their anthropogenic drivers, and their impacts on ecosystem services

    Ponderosa Pine Regeneration,Wildland Fuels Management, and Habitat Conservation: Identifying Trade-Offs Following Wildfire

    Get PDF
    Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites, whereas untreated burned sites had an average of 27 ± 7.68 cavities per hectare. Correspondingly, we found almost double the avian species richness in untreated burned sites compared to treated burned sites (22 species versus 12 species). Unburned forests and untreated burned areas had the same species richness, but hosted unique avian communities. Our results indicate conflicting outcomes with respect to management objectives, most evident in the clear costs to habitat conservation following post-fire management application

    Determining the Quantitative Principles of T Cell Response to Antigenic Disparity in Stem Cell Transplantation

    Get PDF
    Alloreactivity compromising clinical outcomes in stem cell transplantation is observed despite HLA matching of donors and recipients. This has its origin in the variation between the exomes of the two, which provides the basis for minor histocompatibility antigens (mHA). The mHA presented on the HLA class I and II molecules and the ensuing T cell response to these antigens results in graft vs. host disease. In this paper, results of a whole exome sequencing study are presented, with resulting alloreactive polymorphic peptides and their HLA class I and HLA class II (DRB1) binding affinity quantified. Large libraries of potentially alloreactive recipient peptides binding both sets of molecules were identified, with HLA-DRB1 generally presenting a greater number of peptides. These results are used to develop a quantitative framework to understand the immunobiology of transplantation. A tensor-based approach is used to derive the equations needed to determine the alloreactive donor T cell response from the mHA-HLA binding affinity and protein expression data. This approach may be used in future studies to simulate the magnitude of expected donor T cell response and determine the risk for alloreactive complications in HLA matched or mismatched hematopoietic cell and solid organ transplantation

    Herbaceous production lost to tree encroachment in United States rangelands

    Get PDF
    1. Rangelands of the United States provide ecosystem services that benefit society and rural economies. Native tree encroachment is often overlooked as a primary threat to rangelands due to the slow pace of tree cover expansion and the positive public perception of trees. Still, tree encroachment fragments these landscapes and reduces herbaceous production, thereby threatening habitat quality for grassland wildlife and the economic sustainability of animal agriculture. 2. Recent innovations in satellite remote sensing permit the tracking of tree encroachment and the corresponding impact on herbaceous production. We analysed tree cover change and herbaceous production across the western United States from 1990 to 2019. 3. We show that tree encroachment is widespread in US rangelands; absolute tree cover has increased by 50% (77,323 km2) over 30 years, with more than 25% (684,852 km2) of US rangeland area experiencing tree cover expansion. Since 1990, 302 ± 30 Tg of herbaceous biomass have been lost. Accounting for variability in livestock biomass utilization and forage value reveals that this lost production is valued at between 4.1–4.1– 5.6 billion US dollars. 4. Synthesis and applications. The magnitude of impact of tree encroachment on rangeland loss is similar to conversion to cropland, another well-known and primary mechanism of rangeland loss in the US Prioritizing conservation efforts to prevent tree encroachment can bolster ecosystem and economic sustainability, particularly among privately-owned lands threatened by land-use conversion

    Tracking spatial regimes in animal communities: Implications for resilience-based management

    Get PDF
    Spatial regimes (the spatial extents of ecological states) exhibit strong spatiotemporal order as they expand or contract in response to retreating or encroaching adjacent spatial regimes (e.g., woody plant invasion of grasslands) and human management (e.g., fire treatments). New methods enable tracking spatial regime boundaries via vegetation landcover data, and this approach is being used for strategic management across biomes. A clear advancement would be incorporating animal community data to track spatial regime boundaries alongside vegetation data. In a 41,170-hectare grassland experiencing woody plant encroachment, we test the utility of using animal community data to track spatial regimes via two hypotheses. (H1) Spatial regime boundaries identified via independent vegetation and animal datasets will exhibit spatial synchrony; specifically, grassland:woodland bird community boundaries will synchronize with grass:woody vegetation boundaries. (H2) Negative feedbacks will stabilize spatial regimes identified via animal data; specifically, frequent fire treatments will stabilize grassland bird community boundaries. We used 26 years of bird community and vegetation data alongside 32 years of fire history data. We identified spatial regime boundaries with bird community data via a wombling approach. We identified spatial regime boundaries with vegetation data by calculating spatial covariance between remotely-sensed grass and woody plant cover per pixel. For fire history data, we calculated the cumulative number of fires per pixel. Setting bird boundary strength (wombling R2 values) as the response variable, we tested our hypotheses with a hierarchical generalized additive model (HGAM). Both hypotheses were supported: animal boundaries synchronized with vegetation boundaries in space and time, and grassland bird communities stabilized as fire frequency increased (HGAM explained 38% of deviance). We can now track spatial regimes via animal community data pixel-by-pixel and year-by-year. Alongside vegetation boundary tracking, tracking animal community boundaries can inform the scale of management necessary to maintain animal communities endemic to desirable ecological states. Our approach will be especially useful for conserving animal communities requiring large-scale, unfragmented landscapes—like grasslands and steppes
    • …
    corecore