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A B S T R A C T

The concept of ecological resilience (the amount of disturbance a system can absorb before collapsing and
reorganizing) holds potential for predicting community change and collapse—increasingly common issues in the
Anthropocene. Yet neither the predictions nor metrics of resilience have received rigorous testing. The cross-
scale resilience model, a leading operationalization of resilience, proposes resilience can be quantified by the
combination of diversity and redundancy of functions performed by species operating at different scales. Here,
we use 48 years of sub-continental avian community data aggregated at multiple spatial scales to calculate
resilience metrics derived from the cross-scale resilience model (i.e., cross-scale diversity, cross-scale re-
dundancy, within-scale redundancy, and number of body mass aggregations) and test core predictions inherent
to community persistence and change. Specifically, we ask how cross-scale resilience metrics relate community
stability and collapse. We found low mean cross-correlation between species richness and cross-scale resilience
metrics. Resilience metrics constrained the magnitude of community fluctuations over time (mean species
turnover), but resilience metrics but did not influence variability of community fluctuations (variance in turn-
over). We show shifts in resilience metrics closely predict community collapse: shifts in cross-scale redundancy
preceded abrupt changes in community composition, and shifts in cross-scale diversity synchronized with abrupt
changes in community composition. However, we found resilience metrics only weakly relate to maintenance of
particular species assemblages over time. Our results distinguish ecological resilience from ecological stability
and allied concepts such as elasticity and resistance: we show communities may fluctuate widely yet still be
resilient. Our findings also differentiate the roles of functional redundancy and diversity as metrics of resilience
and reemphasize the importance of considering resilience metrics from a multivariate perspective. Finally, we
support the contention that ecological stability is nested within ecological resilience: stability predicts the be-
havior of systems within an ecological regime, and resilience predicts the maintenance of regimes and behavior
of systems collapsing into alternative regimes.

1. Introduction

“If there is a worthwhile distinction between resilience and stability
it is important that both be measurable.”

C. S. Holling, 1973

As the Anthropocene progresses, community change and collapse
are increasingly common (Folke et al., 2004; Steffen et al., 2015). The
concept of ecological resilience, defined by Holling (1973) as the
amount of disturbance a system can absorb before collapsing into an
alternative regime, holds potential for predicting community change
and collapse (Angeler and Allen, 2016). Quantifying ecological

resilience has been a long-term pursuit in ecology (Carpenter et al.,
2005; Cumming et al., 2005; Standish et al., 2014), ecological resilience
has been applied internationally in management frameworks (Briske
et al., 2008; Bestelmeyer et al., 2017; Seidl et al., 2016), and multiple
ecological resilience metrics have been proposed (Allen et al., 2005;
Baho et al., 2017). Yet neither the core predictions nor metrics of
ecological resilience theory have received rigorous testing (Angeler and
Allen, 2016; Sundstrom et al., 2018).

Ecological resilience theory makes key predictions concerning
complex, nonlinear, and abruptly shifting system behavior, making it
uniquely applicable to Anthropocene issues (Gunderson, 2000). Ecolo-
gical resilience is related to, but distinct from, ecological stability (the
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ability of a system to return to an equilibrium state post-dis-
turbance—also known as “engineering resilience,” “bounce-back time,”
“resistance,”, and “elasticity”; Holling, 1973; Hillebrand et al., 2018;
Pimm, 1984). This is a crucial distinction because while ecological re-
silience makes predictions concerning abrupt regime shifts into alter-
native states, ecological stability only makes predictions concerning a
single regime (Angeler and Allen, 2016). Ecological resilience theory
predicts that a system may fluctuate greatly (have low stability and
exhibit non-equilibrium behavior) and yet have high ecological resi-
lience or conversely fluctuate little and have low ecological resilience
(Angeler and Allen, 2016; Holling, 1973). That is, a resilient system will
constrain the magnitude of fluctuations so that the system stays within
a given regime, but the same resilient system may exhibit high in-
stability within the regime (Gunderson et al., 2012). By definition, loss
of ecological resilience increases the likelihood of system collapse and
regime shifts due to loss of structures, functions, and feedbacks that
maintain the current regime (Allen et al., 2005). Thus, ecological re-
silience should be both quantifiably distinct from stability and clearly
correspond with community change and collapse (Holling, 1973;
Standish et al., 2014).

The cross-scale resilience model, a leading model for oper-
ationalizing and quantifying ecological resilience (hereafter referred to
simply as “resilience”), provides the opportunity to test these core
predictions of resilience theory (Peterson et al., 1998; Sundstrom et al.,
2018). The cross-scale resilience model establishes that redundancy and
diversity of organism functions across discontinuous scale domains of
resource use in a system confer resilience (Holling, 1992; Peterson
et al., 1998; Fig. 1). Quantifying redundancy and diversity of functions
across these discontinuous scale domains can produce metrics to esti-
mate the relative resilience of systems (Bouska, 2018, Sundstrom et al.,
2018; Angeler et al., 2019a). For example, Allen et al. (2005) proposed
several cross-scale resilience metrics such as within-scale redundancy,
cross-scale redundancy, cross-scale diversity, and number of scale do-
mains.

Here, we use a half-century of sub-continental avian community
data to calculate cross-scale resilience metrics and test how resilience
relates to community stability and collapse. We do this by testing two
core resilience theory predictions concerning its relationship with sta-
bility and two concerning its relationship with community change and
collapse. The first resilience-stability relationship prediction is that re-
silience is distinct from stability: we test this by quantifying the degree
of correlation between species richness and cross-scale resilience me-
trics. Although species richness is not a direct metric of stability, it is
correlated with stability and influences the ability of a system to
“bounce back” from disturbances (Hautier et al., 2015; Ives and

Carpenter, 2007; McCann, 2000; Mougi and Kondoh, 2012; Tilman and
Downing, 1994). The second resilience-stability relationship prediction
is that resilience will constrain the magnitude of system fluctuations but
not their variability: we test this by determining the relationship be-
tween cross-scale resilience metrics and the mean and variance of an-
nual species turnover. In this case, cross-scale diversity is expected to
reduce mean turnover the most, and all resilience metrics should have
little influence on turnover variance (Allen et al., 2005; Angeler et al.,
2019a). The first resilience-collapse relationship prediction is that
changes in cross-scale resilience metrics will predict community col-
lapse: we test this by determining if changes in cross-scale resilience
metrics synchronize with abrupt shifts in community composition.
Within-scale redundancy, cross-scale redundancy, and number of scale
domains are expected to most strongly predict community collapse
(Nash et al., 2016; Roberts et al., 2019; Spanbauer et al., 2016). Finally,
the second resilience-collapse prediction is cross-scale resilience metrics
will only weakly predict maintenance of specific species assemblages:
we test this by determining how cross-scale resilience metrics relate to
changes in community similarity over time (Gunderson, 2000; Angeler
et al., 2019b).

2. Methods

2.1. Calculating cross-scale resilience metrics

Cross-scale resilience metrics are calculated by first identifying a
biotic community within a system (e.g., an avian forest community) and
acquiring census presence/absence data from the biotic community
(Allen et al., 2005), identifying the discontinuous scale domains at
which functions are performed by each species in the biotic community
(Nash et al., 2014a,b), and finally using functional traits of species
across scale domains to estimate functional redundancy and diversity
within and across scale domains (Fischer et al., 2007).

2.1.1. Identifying biotic communities
For biotic community data, we used the North American Breeding

Bird Survey (BBS) which estimates bird community composition via
yearly roadside avian point-count surveys (Sauer et al., 2017). Begun in
1966, the BBS is conducted along a series of> 2500 permanent, ran-
domly-distributed routes during the breeding season (Sauer et al.,
2017). We analyzed BBS route data from 1967−2014.

We defined avian communities by spatially binning BBS routes ac-
cording to US Environmental Protection Agency (EPA) ecoregions
(Omernik and Griffith, 2014; Fig. 2). These ecoregions are spatially
hierarchical, meaning that finer-scaled ecoregions are bounded by and
nested within larger-scaled ecoregions. Because smaller-scale EPA
ecoregion boundaries are bounded by US political boundaries, we only
consider BBS routes within the continental United States. We con-
sidered avian communities at the three progressively smaller spatial
scales (EPA ecoregion levels II, III, IV; Fig. 2). If binned BBS data within
an ecoregion did not extend for ≥24 years (i.e., ≥50% of the study
period), we excluded that ecoregion from analysis (Table S1; see sup-
plementary computer code for further details).

2.1.2. Identifying discontinuous scale domains
We performed discontinuity analysis on binned BBS data for each

ecoregion at each scale using the “discontinuity detector” method
(Barichievy et al., 2018) based on the Gap Rarity Index which identifies
scale domains by detecting discontinuities in log-ranked organism body
masses (Restrepo et al., 1997). For taxa with determinant growth, mean
body mass reliably differentiates size aggregations and is strongly al-
lometric to the scale domains at which functions are carried out by
organisms (Allen et al., 2006; Holling, 1992; Nash et al., 2014b). Be-
cause of known negative observation biases for waterfowl and allied
families and because water-dwelling avian families’ follow different
body masses patterns than terrestrial avian families, we removed all

Fig. 1. The hypothesized relationship between the scale of a species’ interaction
with their environment (as assayed by their body size) and their membership in
a functional group—modified from Peterson et al. (1998). Differently-sized
species use resources at different spatial and temporal scales. Species in the
same functional group use similar resources, but those that operate at larger
scales require those resources to be more aggregated in space than do species
that operate at smaller scales. Within scales, a diversity of functional groups
provides robust ecological functioning, whereas replication of function across
scales reinforces ecological function. Ecological resilience emerges from di-
versity of ecological function at specific scales and the replication of function
across a diversity of scales.
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species from the Anseriformes, Gaviiformes, Gruiformes, Pelecani-
formes, Phaethontiformes, Phoenicopteriformes, Podicipediformes,
Procellariiformes, and Suliformes families from the analysis (Holling,
1992; Sundstrom et al., 2012). We obtained mean body mass estimates
for all remaining species from the CRC Handbook of Avian Body Masses
(Dunning, 2007). Because Gap Rarity Index tends to overestimate dis-
continuities in species-poor samples, we removed any route with<40
species observed (Barichievy et al., 2018; Stow et al., 2007). We simply
counted the number of body mass aggregations to obtain that metric.

2.1.3. Estimating within- and cross-scale functional redundancy, cross-scale
diversity

We assigned functional types to each species according to diet and
foraging strategies (Ehrlich et al., 1988). We broke diets into carnivore,
herbivore, and omnivore groups, where omnivores are defined as spe-
cies with approximately even proportions of plant and animal intake
(Bouska, 2018). We divided foraging strategies into five groups: water,
ground, foliage, bark, and air (Sundstrom et al., 2012). Thus, functional

groups represented combinations of diet and foraging strategies (e.g.,
water carnivore, ground herbivore, etc.).

We then used functional groups along with body mass aggregations
to calculate cross-scale redundancy (average number of aggregations
for which each functional group has at least one representative),
within-scale redundancy (the average number of representatives from
each functional group within each aggregation), and cross-scale di-
versity (the average diversity of functional groups across aggregations)
metrics for each ecoregion within each of the three spatial scales
(Fig. 2). The equations for these are as follows:
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where a is the ith number of body mass aggregations, φ is the number of
functional groups with at least one representative in an aggregation, f is
the jth functional group in the ith body mass aggregation, and p is the jth

species in each aggregation.

2.2. Resilience-stability test 1: relationship between cross-scale resilience
and richness

We used cross-correlation to compare species richness with each
cross-scale resilience metric (number of body mass aggregations, cross-
scale redundancy, within-scale redundancy, cross-scale diversity) for
each ecoregion across−5 to 5 lags. That is, we used cross-correlation to
quantify temporal covariance of richness and resilience metrics, de-
termining if patterns of resilience metrics preceded (back to 5 time
steps before) or followed (forward to 5 time steps after) patterns of
richness. For each lag, we calculated the mean and 85% confidence
intervals of the absolute values of correlation coefficients across ecor-
egions.

2.3. Resilience-stability test 2: relationship between cross-scale resilience
and turnover

Second, we determined the relationship between cross-scale resi-
lience metrics and species turnover. We calculated relative species
turnover (the proportion of the species pool that turns over annually)
using the following equation (Diamond, 1969; Wonkka et al., 2017):

= + ++ + +Turnover U U S S( )/( )t t t t t1 1 1

where Ut is the number of species present in the ecoregion at year t that
were not present in year t + 1; Ut+1 is the number of species present in
the ecoregion at year t + 1 that were not present in year t; St is the total
number of species present in the ecoregion at year t; and St+1 is the
total number of species present in the ecoregion at year t + 1.

We then developed two linear mixed models: 1) to determine if
resilience metrics influenced the magnitude of species turnover, we
used the mean of the absolute value of species turnover over time as the
response variable, and 2) to determine if resilience metrics influenced
the variability of species turnover, we used the standard deviation of
species turnover over time as the response variable. For both models,
we set mean resilience metrics over time as the predictor variables. We
allowed intercepts to vary by hierarchically nested EPA ecoregions
(e.g., for level III ecoregions, random effect in R package “lme4” syntax
was “(1|Level I/Level II)”). To minimize collinearity, we calculated
variance inflation factors and sequentially removed predictor variables
(resilience metrics) with the highest variance inflation factor until

Fig. 2. Maps of US Environmental Protection Agency ecoregions corresponding
with level 2 (A), level 3 (B), and level 4 (C). Missing (white-out) ecoregions did
not contain sufficiently long time series of North American Breeding Bird
Survey data (≥24 years). White lines indicate ecoregion boundaries.
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variance inflation factor values for all variables were ≤3.

2.4. Resilience-collapse test 1: relationship between cross-scale resilience
and abrupt shifts

We determined whether significant temporal shifts in cross-scale
resilience metrics synchronized with abrupt shifts in community com-
position. To identify abrupt shifts in community composition, we 1)
performed detrended correspondence analysis (DCA; “decorana” func-
tion from the vegan package in R) on Hellinger-transformed relative
abundances of species in each ecoregion over time, 2) extracted values
of the first DCA axis (DCA1) for each year, 3) used generalized additive
models (GAMs) to model changes in DCA1 over time (with year as the
smoothed predictor) for each ecoregion, 4) extracted predicted DCA1
response values from GAMs for each ecoregion (Fig. 3a), and 5) de-
termined where community structure significantly changed by first
calculating derivatives and 85% confidence limits around the deriva-
tives from the GAM predictions and then locating ranges in the time
series where derivative confidence limits did not encompass zero
(Simpson, 2018; Fig. 3b). We located shifts in cross-scale resilience
metrics in a similar fashion–by extracting GAM predictions, calculating
derivatives and confidence intervals, and locating ranges where con-
fidence limits did not encompass zero (Fig. 3b). To test for synchrony
between cross-scale resilience metrics and structural community
change, we encoded DCA1 and resilience metric time series as binary
variables, where either a significant shift (85% confidence limit of de-
rivative did not encompass zero) occurred or did not for each time step
(i.e., each year of BBS data; Fig. 3c). We aggregated significant in-
creases and decreases into an absolute value because both significant
increases and decreases in ordinated values (e.g., DCA) or resilience
metrics, regardless of directionality, could signal regime shifts. We set
the binary DCA1 variable as the response and binary resilience metrics
predictors in a binomial generalized linear mixed model. We checked
for collinearity with variance inflation factors.

2.5. Resilience-collapse test 2: relationship between cross-scale resilience
and community similarity

We determined the relationship between cross-scale resilience me-
trics and patterns of community similarity over time. We estimated

community similarity over time via the Jaccard index. That is, we
calculated Jaccard similarity between each year of BBS data for each
ecoregion and then used linear regression to estimate change in com-
munity identity over time (i.e., slope; sensu Dornelas et al., 2014). Be-
cause the Jaccard index ranges from 0 (complete dissimilarity in spe-
cies) to 1 (complete similarity in species), a slope of zero indicates no
change in community composition over time, and a slope of −1 in-
dicates a complete change in species pool. We then developed linear
mixed models, setting the slope of the Jaccard index as the response
variable. For predictor variables, we used initial resilience metric values
(the chronologically first value for each resilience metric for each
ecoregion) and mean resilience metric values (the average of each re-
silience metric value across the time series for each ecoregion). To ac-
count for variance in certainty of Jaccard slope fits, we used 1/standard
error of each Jaccard slope fit as prior weights for linear mixed models.
We used the methods from Test 2 for minimizing collinearity as above
(i.e., sequential removal of predictor variables via variance inflation
factors).

3. Results

3.1. Resilience-stability test 1: relationship between cross-scale resilience
and richness

Mean cross-correlation between richness and resilience metrics was
low across scales and individual metrics, ranging from r=0.16 ± 0.01
(cross-scale redundancy at lag −5 at the finest scale) to
r= 0.63 ± 0.02 (cross-scale diversity at lag 0 at the finest scale;
Fig. 4). Patterns were consistent across scales: the strongest correlation
between richness and all metrics at all scales occurred at lag zero
(annually) after which correlations decreased sharply (Fig. 4). At the
broadest scale (level II), confidence limits show little difference be-
tween individual metrics’ correlations with richness (Fig. 4). At the
finer scales (levels III, IV), cross-scale diversity correlated most strongly
with richness (Fig. 4). Within-scale redundancy showed the second
greatest correlation with richness (max r= 0.50 ± 0.02 at level IV, lag
0; Fig. 4). Cross-scale redundancy (r= 0.34 ± 0.02 at lag 0) and
number of aggregations (0.29 ± 0.02 at lag 0) displayed the weakest
correlation with richness at finer scales (Fig. 4).

Fig. 3. Visual depiction of methods for detecting synchrony/asynchrony in abrupt shifts in community composition (DCA1) and in resilience metrics (e.g., cross-scale
diversity [Cross Div]). Panel A shows an example of predicted DCA1 and Cross Div values derived from generalized additive models. Panel B shows approximate
derivatives of predicted DCA1 and Cross Div values. Panel C shows the binary test for synchrony/asynchrony, where red bars (abrupt shifts) and green bars (no
abrupt shift detected) aligning indicate synchrony and lack of alignment indicates asynchrony.
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3.2. Resilience-stability test 2: relationship between cross-scale resilience
and turnover

Resilience metrics had significantly negative relationships with
mean annual species turnover at all scales, but resilience metrics
showed little or no association with standard deviation of annual spe-
cies turnover (Fig. 5; Table S1). Cross-scale diversity was a significant
predictor of mean species turnover at the broadest scale and the
strongest predictor at the finest scale (−0.027 ± 0.001 and
−0.034 ± 0.002 at levels II and IV respectively), and cross-scale di-
versity was a significant negative predictor of standard deviation in
species turnover at the finest scale (−0.004 ± 0.002). Cross-scale re-
dundancy was a significant predictor at all scales, although its strength
decreased at finer scales until it was the weakest predictor at the finest
scale (−0.018 ± 0.011, −0.015 ± 0.001, and −0.0059 ± 0.004 at
ecoregion levels II, III, and IV respectively). Cross-scale redundancy
also significantly negatively predicted standard deviation in species
turnover at the finest scale (−0.005 ± 0.003). Within-scale re-
dundancy was a significant predictor at the middle scale
(−0.017 ± 0.006), and number of aggregations was a significant
predictor of middling strength at the finest scale (−0.018 ± 0.004)
(Fig. 5).

3.3. Resilience-collapse test 1: relationship between cross-scale resilience
and abrupt shifts

At all scales, resilience metrics synchronized significantly with
abrupt community shifts (Figs. 6 and 7; Table S2). At the broadest scale
(level II), cross-scale diversity (1.0 ± 0.53) and cross-scale redundancy
(0.67 ± 0.55) synchronized with community change (Figs. 4, 6 and 7).
At the middle scale (level III), number of aggregations (0.21 ± 0.20)
and within-scale redundancy (0.62 ± 0.20) exhibited synchrony with
community change (Figs. 6 and 7), but cross-scale redundancy ex-
hibited asynchrony (i.e., a negative model coefficient; −0.3 ± 0.19)
with community change (Figs. 6 and 7). And at the finest scale (level
IV), all resilience metrics synchronized with abrupt community shifts:
cross-scale diversity showed the strongest synchrony (0.58 ± 0.08;
Figs. 3, 6 and 7), and number of aggregations showed the weakest
synchrony (0.11 ± 0.09).

3.4. Resilience-collapse test 2: relationship between cross-scale resilience
and community similarity

At the broadest and middle scales (levels II, III), neither initial nor
mean resilience metric values significantly predicted changes in com-
munity similarity over time (Table S3). But at the finest scale (level IV),

Fig. 4. Mean cross-correlation estimates and
85% confidence limits between species
richness and cross-scale resilience metrics at
multiple hierarchical scales. Y-axis indicates
degree of correlation (r), and x-axis in-
dicates lags ranging from−5 to 5, where lag
0 indicates annual correlation. Richness and
resilience metrics were calculated from
avian community data recorded at North
American Breeding Bird Survey routes from
1967 − 2014 aggregated by US
Environmental Protection Agency ecor-
egions. Ecoregions range from broad (Level
II) to fine (Level IV). Note: Cross Div= cross-
scale diversity; Cross Red= cross-scale re-
dundancy; Num Aggs= number of body mass
aggregations; Within Red=within-scale re-
dundancy.
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initial values of cross-scale diversity (0.0002 ± 0.0001) and number of
aggregations (0.0002 ± 0.0001) significantly, albeit weakly, predicted
reduced community change (i.e., pushed Jaccard slopes closer to
zero–no net community change; Table S3).

4. Discussion

Using a half-century of subcontinental community data, we provide
quantitative support for core predictions of ecological resilience theory
regarding how ecological resilience relates to ecological stability and
collapse. Per Holling’s call in his seminal manuscript on resilience
theory (Holling, 1973), we found resilience is related to but distinct

from stability. Importantly, our results distinguish ecological resilience
from concepts allied with stability such as engineering resilience,
“bounce-back” time to equilibrium, resistance, and elasticity
(Gunderson, 2000; Pimm, 1984; Standish et al., 2014). We also show
that shifts in cross-scale resilience metrics clearly predict and coincide
with abrupt community shifts, but at the same time, resilience is weakly
related to community change in terms of maintenance of a particular
species assemblages over time. We also provide interpretability for
cross-scale resilience metrics: we distinguish the roles of functional
redundancy and diversity metrics of community collapse and commu-
nity similarity, respectively (Peterson et al., 1998; Walker et al., 1999),
and we show number of aggregations (i.e., scale domains) may be an

Fig. 5. Coefficient estimates and 85% confidence
limits from linear mixed models testing the re-
lationship between mean annual species turnover
and mean resilience metrics (red dots) and the
standard deviation (SD) of annual species turnover
and mean resilience metrics (blue dots) at multiple
hierarchical scales. Species turnover and resilience
metrics were calculated from avian community
data recorded at North American Breeding Bird
Survey routes from 1967 − 2014 aggregated by US
Environmental Protection Agency ecoregions.
Ecoregions range from broad (Level II) to fine
(Level IV). Note: Cross Div= cross-scale diversity;
Cross Red= cross-scale redundancy; Num
Aggs= number of body mass aggregations; Within
Red=within-scale redundancy.

Fig. 6. Coefficient estimates and 85% confidence
limits from binomial generalized linear mixed
models testing synchrony between abrupt commu-
nity shifts and resilience metrics at multiple hier-
archical scales. Synchrony is defined as simulta-
neous occurrence of regime shifts (i.e., significant
change in first axis of Detrended Correspondence
Analysis) and significant shifts in resilience metrics.
Abrupt community shifts and resilience metrics
were derived from avian community data recorded
at North American Breeding Bird Survey routes
from 1967 − 2014 aggregated by US
Environmental Protection Agency ecoregions.
Ecoregions range from broad (Level II) to fine
(Level IV). Note: DCA= first axis of detrended cor-
respondence analysis; Cross Div= cross-scale di-
versity; Cross Red= cross-scale redundancy; Num
Aggs= number of body mass aggregations; Within
Red=within-scale redundancy.
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unresponsive metric if systems reorganize around similar numbers of
scale domains during and post-collapse, meaning this metric may only
detect extreme collapse events (Angeler et al., 2019b; Roberts et al.,
2019).

Our results reaffirm the importance of avoiding the conflation of
ecological resilience and ecological stability. Stability theory predicts a
particular community composition (e.g., higher species richness) will
reduce variance in system functionality but makes no assertions con-
cerning alternative states (Allan et al., 2011; Cardinale et al., 2013;
Tilman, 1996; Wagg et al., 2018). Additionally, stability typically does
not consider ecological complexity features, such as spatial and tem-
poral scaling structures or thresholds (Baho et al., 2017; Hillebrand
et al., 2018). In contrast, resilience theory predicts resilient systems

may exhibit wide ranges of variance, community composition will be
dynamic and adaptive, and scaling patterns of functional redundancy
and diversity within communities (instead of particular community
compositions) will determine the ability of a system to remain within
one of multiple alternative regimes (Allen et al., 2014; Angeler et al.,
2019a; Chillo et al., 2011; Sundstrom et al., 2018). Our results support
these differences between stability and resilience: resilience metrics had
low degrees of correlation with species richness, a metric that is closely
correlated to stability and the ability of a system to “bounce back” from
disturbances (Hautier et al., 2015; Ives and Carpenter, 2007; McCann,
2000; Mougi and Kondoh, 2012; Tilman and Downing, 1994). That is,
greater richness did not necessarily beget greater resilience. This
finding contrasts with a pervasive conflation of richness and resilience

Fig. 7. Comparison of synchrony/asynchrony between periods of significant avian abrupt community shifts (red blocks) and periods of significant changes in cross-
scale resilience metrics across a sample of Environmental Protection Agency Levels 2, 3, and 4 ecoregions from 1967 − 2014. Black lines (y-axis) indicate predicted
values from GAMs of resilience metrics, grey shading indicates pointwise 85% confidence limits around predictions, and colored sections indicate regions of
significant change in time series (where simulated confidence limits of derivatives from GAMs did not encompass zero). Note: Cross Div= cross-scale diversity; Cross
Red= cross-scale redundancy.
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(Bellwood and Hughes, 2001; Fischer et al., 2007; Oliver et al., 2015;
Standish et al., 2014). As expected, cross-scale diversity exhibited the
highest correlation with richness, although its correlation was much
less than typical cutoffs for collinearity. Cross-scale resilience metrics
also did not predict variability in community composition (standard
deviation in species turnover) except weakly at the finest scale. This
supports the resilience theory prediction that systems may have low
stability (high variance in species turnover) but high resilience
(Holling, 1973). Our results also support the contention that the con-
cept of ecological stability is nested within ecological resilience: resi-
lience metrics constrained the magnitude of temporal community
fluctuations (mean species turnover) but only weakly predicted varia-
bility in community fluctuations—which is the purview of stability
theory (Angeler and Allen, 2016; Hautier et al., 2015; Mougi and
Kondoh, 2012).

Similarly, resilience theory predicts systems with higher resilience
will be more likely to retain similar structures and functions over time,
but unlike stability, resilience theory makes few predictions on the
maintenance of a particular species assemblage (Allen and Holling,
2010; Bellwood and Hughes, 2001; Gunderson, 2000). Our results
support this premise. Cross-scale resilience metrics were not strongly
associated with maintenance of a particular group of species. Instead,
resilience metrics predicted maintenance of overall community struc-
ture per their synchrony with abrupt community shifts across scales.
That is, resilience metrics predict significant abrupt community shifts
but not community similarity over time (Angeler et al., 2019b). How-
ever, higher resilience metrics did weakly predict maintenance of
community composition over time as well as constraining mean species
turnover which still supports a connection between species composition
and resilience.

The cross-scale resilience model differentiates the roles of functional
redundancy and functional diversity, and we corroborate this
(Bellwood and Hughes, 2001; Elmqvist et al., 2003; Nash et al., 2016;
Peterson et al., 1998). For instance, the model predicts losses in critical
functions across scaling domains will increase the propensity for eco-
logical regime shifts; but more specifically, redundancy is expected to
confer resilience via response diversity (Elmqvist et al., 2003; Walker
et al., 1999), while diversity confers resilience via the ability to produce
and adapt to novelty (Allen and Holling, 2010; Gunderson and Holling,
2002). And indeed, we show shifts in functional redundancy across
scales (cross-scale redundancy) were asynchronous with community-
level change, whereas shifts in functional diversity across scales (cross-
scale diversity) were synchronous with abrupt community shifts. Thus,
tracking changes in functional redundancy could determine system
propensity for regime shifts, and tracking functional diversity could
identify periods of reorganization during a disturbance that could result
in a regime shift. Importantly, the distinction between functional di-
versity and redundancy manifested in one of the three scales we ana-
lyzed. The reason for this is unclear, but because resilience is a scale-
dependent property of ecological systems, the scale-dependent behavior
of functional redundancy is not unexpected (Gunderson and Holling,
2002; Allen et al., 2005; Allen et al., 2014). Current research on iden-
tifying ecologically meaningful scales (e.g., Angeler et al., 2015) and
identifying the spatial boundaries of ecological regimes (i.e., spatial
regimes; Allen et al., 2016) stand to clarify the scale-specific behaviors
of functional redundancy in reflecting resilience.

Because resilience is an emergent property of complex systems, no
single metric can encapsulate it (Angeler and Allen, 2016). The peril of
developing resilience metrics is reliance on one or a few to measure a
given property of interest. For example, within the stability literature,
the diversity-stability debate has long been buffeted by waves of in-
terest in one metric (e.g., species richness) or another (functional di-
versity, phylogenetic diversity, evenness, etc.) as well as conflicting
results from the same metric (Hillebrand et al., 2018; Ives and
Carpenter, 2007; McCann, 2000). Likewise, within resilience literature,
this has played out in the search for univariate generic early warning

signals of regime shifts (Burthe et al., 2016; Clements et al., 2015; Van
Nes and Scheffer, 2007) and specific distance-to-thresholds for a spe-
cified context (i.e. the resilience of what to what) (Carpenter et al.,
2001; Groffman et al., 2006). In contrast, the cross-scale resilience
model and its metrics require and assume simultaneous consideration of
multiple metrics to quantify resilience (Allen et al., 2005; Angeler and
Allen, 2016; Sundstrom and Allen, 2014; Sundstrom et al., 2018). We
show that individual resilience metrics varied in their relationships
with stability and abrupt community shift metrics, meaning each metric
reflects unique aspects of system resilience. Thus, our results support
considering metrics of resilience from a multivariate perspective.

For resilience theory to progress, it must have measurable and in-
terpretable characteristics (Carpenter et al., 2005; Cumming et al.,
2005; Baho et al., 2017). Although we demonstrate the ability of resi-
lience metrics to compare changes in a system’s resilience over time,
how to compare relative resilience between systems remains unclear. It
is not obvious that a system with more body mass aggregations is more
resilient than a system with fewer (Allen et al., 2005). Likewise, it is not
clear that when resilience erodes and regime shifts occur that the
number of body mass aggregations will change; they may simply re-
organize around a similar number of scale domains (Angeler et al.,
2019b; Gunderson et al., 2012). Also, it is unclear what increases versus
decreases in resilience metrics mean for propensity toward regime shifts
(Allen et al., 2005; Fischer et al., 2007). This may be a result of the
present “relative” nature of resilience metric units. However, the clarity
of signal in resilience metrics that we demonstrate (with noisy data
spanning half a century and much of a continent) suggest comparable
patterns exist, and comparisons can improve if measurements over time
provide refined pictures of system resilience (Angeler and Allen, 2016;
Baho et al., 2017). This bodes well for the usefulness of resilience
metrics in the Anthropocene, where the need for understanding system
resilience to change and collapse is only increasing.
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