46 research outputs found

    Role of HMGB1 as a suitable biomarker of subclinical intestinal inflammation and mucosal healing in patients with inflammatory bowel disease

    Get PDF
    BACKGROUND: Noninvasive biomarkers of high- and low-grade intestinal inflammation and of mucosal healing (MH) in patients with inflammatory bowel disease are currently lacking. We have recently shown that fecal high mobility group box 1 (HMGB1) protein is a novel biomarker of gut inflammation. We aimed at investigating in a mouse model if HMGB1 was able to foresee both a clinically evident and a subclinical gut inflammation and if its normalization indicated MH. We also aimed at confirming the results in patients with Crohn's disease (CD) and ulcerative colitis. METHODS: C57BL6/J mice were treated with increasing doses of dextran sodium sulphate to induce colitis of different severity degrees; 28 with CD, 23 with ulcerative colitis, and 17 controls were also enrolled. Fecal HMGB1 was analyzed by enzyme-linked immunosorbent assay and immunoblotting. RESULTS: Fecal HMGB1 increased by 5-, 11-, 18-, and 24-folds with dextran sodium sulphate doses of 0.25%, 0.50%, 1%, and 4%, respectively, showing that the protein detected a high-grade and a subclinical inflammation. After a recovery time of 4-week posttreatment, HMGB1 returned to control levels, paralleling MH. In patients, fecal HMGB1 significantly correlated with endoscopic indexes (Simple Endoscopic Score for Crohn's Disease [SES-CD], endoscopic Mayo subscore), but not with the disease activity indexes (Crohn's disease Activity Index, partial Mayo score). CONCLUSIONS: Fecal HMGB1 is a robust noninvasive biomarker of clinically overt and subclinical gut inflammation; it can also be a surrogate marker of MH. We suggest the use of fecal HMGB1 to monitor the disease course and assess therapy outcomes in inflammatory bowel diseaseBACKGROUND: Noninvasive biomarkers of high- and low-grade intestinal inflammation and of mucosal healing (MH) in patients with inflammatory bowel disease are currently lacking. We have recently shown that fecal high mobility group box 1 (HMGB1) protein is a novel biomarker of gut inflammation. We aimed at investigating in a mouse model if HMGB1 was able to foresee both a clinically evident and a subclinical gut inflammation and if its normalization indicated MH. We also aimed at confirming the results in patients with Crohn's disease (CD) and ulcerative colitis. METHODS: C57BL6/J mice were treated with increasing doses of dextran sodium sulphate to induce colitis of different severity degrees; 28 with CD, 23 with ulcerative colitis, and 17 controls were also enrolled. Fecal HMGB1 was analyzed by enzyme-linked immunosorbent assay and immunoblotting. RESULTS: Fecal HMGB1 increased by 5-, 11-, 18-, and 24-folds with dextran sodium sulphate doses of 0.25%, 0.50%, 1%, and 4%, respectively, showing that the protein detected a high-grade and a subclinical inflammation. After a recovery time of 4-week posttreatment, HMGB1 returned to control levels, paralleling MH. In patients, fecal HMGB1 significantly correlated with endoscopic indexes (Simple Endoscopic Score for Crohn's Disease [SES-CD], endoscopic Mayo subscore), but not with the disease activity indexes (Crohn's disease Activity Index, partial Mayo score). CONCLUSIONS: Fecal HMGB1 is a robust noninvasive biomarker of clinically overt and subclinical gut inflammation; it can also be a surrogate marker of MH. We suggest the use of fecal HMGB1 to monitor the disease course and assess therapy outcomes in inflammatory bowel diseas

    Fecal High-Mobility Group Box 1 as a Marker of Early Stage of Necrotizing Enterocolitis in Preterm Neonates

    Get PDF
    Introduction: An early diagnosis of necrotizing enterocolitis (NEC), a major gastrointestinal emergency in preterm newborns, is crucial to improve diagnostic approach and prognosis. We evaluated whether fecal high-mobility group box protein 1 (HMGB1) may early identify preterms at risk of developing NEC.Materials and Methods: A case-control study including neonates admitted at the Neonatal Intensive Care Unit (NICU) of the Sapienza University Hospital “Umberto I” in Rome, from July 2015 to December 2016. Stool samples obtained from cases (preterm newborns with NEC) and controls (newborns without NEC) were collected at the enrolment (T0) and within 7–14 days after the first sample collection (T1). HMGB1, extracted and measured with western blot, was reported as densitometry units (DUS).Results: HMGB1 levels in 30 cases (n = 28—Bell stage 1, n = 2 Bell stage 2) were higher [T0: 21,462 DUS (95% CI, 16,370–26,553 DUS)—T1: 17,533 DUS (95% CI, 13,052–22,014 DUS)] than in 30 preterm controls [T0: 9,446 DUS (95% CI, 6,147–12,746 DUS)—T1: 9,261 DUS (95% CI, 5,126–13,396 DUS), p < 0.001). Preterm newborns showed significant higher levels of HMGB1 (15,690 DUS (95% CI, 11,929–19,451 DUS)] in comparison with 30 full-term neonates with birth weight >2,500 g [6,599 DUS (95% CI, 3,141–10,058 DUS), p = 0.003]. Multivariate analysis showed that the risk of NEC was significantly (p = 0.012) related to the HMGB1 fecal levels at T0.Conclusions: We suggest fecal HMGB1 as a reliable marker of early NEC in preterm neonates. This study supports further investigation on the role of fecal HMGB1 assessment in managing preterm newborns at risk of NEC. Further studies are advocated to evaluate diagnostic accuracy of this marker in more severe forms of the disease

    Dipotassium Glycyrrhizate Improves Intestinal Mucosal Healing by Modulating Extracellular Matrix Remodeling Genes and Restoring Epithelial Barrier Functions

    Get PDF
    Gut mucosal healing (MH) is considered a key therapeutic target and prognostic parameter in the management of inflammatory bowel disease (IBD). The dipotassium glycyrrhizate (DPG), a salt of the glycoconjugated triterpene glycyrrhizin, has been shown to inhibit the High Mobility Group Box 1 (HMGB1) protein, an allarmin strongly implicated in the pathogenesis of most inflammatory and auto-immune disorders. Here we discuss new insights on how DPG acts on MH comparing the acute phase and the recovery phase from experimental colitis in mice. We found that DPG strongly accelerates MH by differently regulating pro-inflammatory (CXCL1, CXCL3, CXCL5, PTGS2, IL-1β, IL-6, CCL12, CCL7) and wound healing (COL3A1, MMP9, VTN, PLAUR, SERPINE, CSF3, FGF2, FGF7, PLAT, TIMP1) genes as observed only during the recovery phase of colitis. Relevant issue is the identification of extracellular matrix (ECM) remodeling genes, VTN, and PLAUR, as crucial genes to achieve MH during DPG treatment. Furthermore, a noticeable recovery of intestinal epithelial barrier structural organization, wound repair ability, and functionality is observed in two human colorectal adenocarcinoma cell lines exposed to DPG during inflammation. Thus, our study identifies DPG as a potent tool for controlling intestinal inflammation and improving MH

    Transcription Factor ZNF281: A Novel Player in Intestinal Inflammation and Fibrosis

    Get PDF
    Background and aims: Recent evidences reveal the occurrence of a close relationship among epithelial to mesenchymal transition (EMT), chronic inflammation and fibrosis. ZNF281 is an EMT-inducing transcription factor (EMT-TF) involved in the regulation of pluripotency, stemness, and cancer. The aim of this study was to investigate in vitro, in vivo, and ex vivo a possible role of ZNF281 in the onset and progression of intestinal inflammation. A conceivable contribution of the protein to the development of intestinal fibrosis was also explored.Methods: Human colorectal adenocarcinoma cell line, HT29, and C57BL/6 mice were used for in vitro and in vivo studies. Mucosal biopsy specimens were taken during endoscopy from 29 pediatric patients with Crohn's disease (CD), 24 with ulcerative colitis (UC) and 16 controls. ZNF281 was knocked down by transfecting HT29 cells with 20 nM small interference RNA (siRNA) targeting ZNF281 (siZNF281).Results: We show for the first time that ZNF281 is induced upon treatment with inflammatory agents in HT29 cells, in cultured uninflamed colonic samples from CD patients and in DSS-treated mice. ZNF281 expression correlates with the disease severity degree of CD and UC patients. Silencing of ZNF281 strongly reduces both inflammatory (IL-8, IL-1beta, IL-17, IL-23) and EMT/fibrotic (SNAIL, Slug, TIMP-1, vimentin, fibronectin, and α-SMA) gene expression; besides, it abolishes the increase of extracellular-collagen level as well as the morphological modifications induced by inflammation.Conclusions: The identification of transcription factor ZNF281 as a novel player of intestinal inflammation and fibrosis allows a deeper comprehension of the pathogenetic mechanisms underlying inflammatory bowel disease (IBD) and provide a new target for their cure

    Design of Evaporation Ponds for the Fractionated Crystallization of Minerals from Desalination Brines

    Get PDF
    The evaporative crystallization of minerals in saltworks is one of the oldest industrial processes still in operation and has the potential to achieve high solar energy conversion efficiencies. While salt production from seawater has been extensively studied, the circular economy of brines exploitation is opening new fields of investigation. This article focuses on the design and simulation of a process for selective precipitation and mineral recovery from reverse osmosis brines. The process involves a two-step evaporative system followed by reactive crystallization of magnesium hydroxide. Laboratory tests and simulations using PHREEQC (pH-REdox-Equilibrium C-program) were conducted to validate the thermodynamics of the process and forecast the optimal operative conditions

    Somatic mutations of thymic epithelial tumors with myasthenia gravis

    Get PDF
    BackgroundThymic epithelial tumors are rare malignant neoplasms that are frequently associated with paraneoplastic syndromes, especially myasthenia gravis. GTF2I is an oncogene mutated in a subgroup of thymomas that is reputed to drive their growth. However, for GTF2I wild-type tumors, the relevant mutations remain to be identified.MethodsWe performed a meta-analysis and identified 4,208 mutations in 339 patients. We defined a panel of 63 genes frequently mutated in thymic epithelial tumors, which we used to design a custom assay for next-generation sequencing. We sequenced tumor DNA from 67 thymomas of patients with myasthenia gravis who underwent resection in our institution.ResultsAmong the 67 thymomas, there were 238 mutations, 83 of which were in coding sequences. There were 14 GTF2I mutations in 6 A, 5 AB, 2 B2 thymomas, and one in a thymoma with unspecified histology. No other oncogenes showed recurrent mutations, while sixteen tumor suppressor genes were predicted to be inactivated. Even with a dedicated assay for the identification of specific somatic mutations in thymic epithelial tumors, only GTF2I mutations were found to be significantly recurrent.ConclusionOur evaluation provides insights into the mutational landscape of thymic epithelial tumors, identifies recurrent mutations in different histotypes, and describes the design and implementation of a custom panel for targeted resequencing. These findings contribute to a better understanding of the genetic basis of thymic epithelial tumors and may have implications for future research and treatment strategies

    Impiego di hydrochar da fanghi di depurazione per la produzione di materiali compositi

    No full text
    Produzione su scala semi-industriale tramite estrusore bivite di materiali compositi a matrice polimerica, biodegradabile e non, con utilizzo di hydrochar, proveniente da fanghi di depurazione civile, come materiale di rinforzo. Studio delle proprietĂ  fisiche e morfologiche dei materiali compositi ottenuti tramite analisi di laboratorio (SEM, TGA, reologia); prove di biodegradabilitĂ  nel caso di compositi a matrice biodegradabile; estrusione di film in bolla; stampaggio 3D. Confronto e osservazioni sulle proprietĂ  e caratteristiche dei diversi materiali processati al variare del tipo di matrice e della quantitĂ  di hydrochar

    USE OF THE RHO GDP DISSOCIATION INHIBITOR 2 PROTEIN AS A DIAGNOSTIC AND PROGNOSTIC MARKER OF INTESTINAL INFLAMMATORY DISEASES

    No full text
    La presente invenzione è diretta all’utilizzo diagnostico, prognostico e di risposta alla terapia della proteina inibitore 2 della dissociazione del Rho GDP per individuare condizioni di infiammazione intestinale cronica (con particolare riferimento alle Malattie Infiammatorie Croniche Intestinali (MICI), note internazionalmente come Inflammatory Bowel Disease (IBD)), nell’uomo. In particolare si descrive un metodo non invasivo per misurare uno stato infiammatorio intestinale nell’uomo attraverso la determinazione della presenza e della concentrazione della proteina inibitore 2 della dissociazione del Rho GDP in estratti fecali
    corecore