109 research outputs found

    Effects of Salmon-Derived Nitrogen on Riparian Forest Growth and Implications for Stream Productivity

    Get PDF
    Anadromous Pacific salmon ( Oncorhynchus spp.) transport marine-derived nitrogen (MDN) to the rivers in which they reproduce. Isotopic analyses indicate that trees and shrubs near spawning streams derive 22-24% of their foliar nitrogen (N) from spawning salmon. As a consequence of this nutrient subsidy, growth rates are significantly in­creased in Sitka spruce ( Picea sitchensis ) near spawning streams. As riparian forests affect the quality of instream habitat through shading, sediment and nutrient filtration, and production of large woody debris (LWD), this fertilization process serves not only to enhance riparian production, but may also act as a positive feedback mechanism by which salmon­ borne nutrients improve spawning and rearing habitat for subsequent salmon generations and maintain the long-term productivity of river corridors along the Pacific coast of North America

    Nitrogen fixation by the savanna tree Philenoptera violacea (Klotzsch) Schrire (Apple leaf) of different ages in a semi-arid riparian landscape

    Get PDF
    AbstractThe acquisition of nitrogen for growth and maintenance is essential for plants, and having multiple strategies for that acquisition is especially important for those colonizing nutrient poor substrates. Philenoptera violacea (Apple leaf) is a prominent tree in nutrient poor savanna and alluvial soils near rivers in southern Africa, where nutrient availabilities are highly variable in space and time. We investigated nitrogen fixation in P. violacea within riparian corridors flanking the Sabie River in Kruger National Park (KNP) in the Lowveld in northeastern South Africa using the natural 15N abundance technique. Results indicated that P. violacea fixes atmospheric nitrogen and this varies with life history stage. We found that foliar δ15N levels were significantly lower in all life stage classes of P. violacea compared with the reference plant D. mespiliformis growing in open riparian forest. In addition δ15N values were significantly different within the different life stages of P. violacea with the leaves of saplings and juvenile plants having significantly lower δ15N levels than mature plants. While δ15N values increased with age, foliar nitrogen concentration values declined, with leaves from sapling P. violacea having significantly higher total nitrogen than adults and juveniles, which were in turn significantly higher than juvenile D. mespiliformis. However, foliar δ15N levels in seedlings of P. violacea growing in a high nutrient environment in flood debris piles did not differ from levels recorded in seedlings of the reference tree. This study confirms that P. violacea is able to fix nitrogen, but it is dependant on soil conditions and the life stage of the trees

    Reconstructing Salmon Abundance in Rivers: An Initial Dendrochronological Evaluation

    Get PDF
    Decision-makers concerned with salmon or their stream habitats are faced with many persistent, difficult questions including: how large and variable were these populations before European settlement? Here, we examine the feasibility of reconstructing salmon abundance using links between marine nutrients carried upstream by Pacific salmon ( Oncorhynchus spp.) and growth of dominant riparian trees in two Alaskan systems. We employ standard dendrochronology methods and regression models to quantify relationships between annual tree-ring growth, salmon escapement, and the climate pattern that affects oceanic production of Northeast Pacific salmon stocks, the Pacific Decadal Oscillation (PDO). We find that known, annual salmon escapement is significantly related to tree-ring growth at two sites in the Pacific coastal rainforest (PCRF) (r2 = 0.23, P \u3c 0.05 at each site), but not at two sites in the boreal forest. We then use relationships established at PCRF sites to reconstruct preliminary salmon spawning abundances to 1820 A.D. The PDO was not correlated with local 19-yr salmon escapement records and could not be used in re­constructions. Reconstructions compare favorably to southeastern Alaska fisheries catch data from 1924 to 1994 (Pearson correlation = 0.301 [P = 0.02] and 0.401 [P \u3c 0.01]). This study demonstrates the promise and utility of dendrochronology for reconstructing salmon returns to streams

    Water in a Changing World

    Get PDF
    Life on earth depends on the continuous flow of materials through the air, water, soil, and food webs of the biosphere. The movement of water through the hydrological cycle comprises the largest of these flows, delivering an estimated I 10,000 cubic kilometers (km^\u3e of water to the land each year as snow and rainfall. Solar energy drives the hydrological cycle, vaporizing water from the surface of oceans, lakes, and rivers as well as from soils and plants (evapotranspiration). Water vapor rises into the atmosphere where it cools, condenses, and eventually rains down anew. This renewable freshwater supply sustains life on the land, in estuaries, and in the freshwater ecosystems of the earth

    Environmental change: prospects for conservation and agriculture in a southwest Australia biodiversity hotspot

    Get PDF
    Accelerating environmental change is perhaps the greatest challenge for natural resource management; successful strategies need to be effective for decades to come. Our objective is to identify opportunities that new environmental conditions may provide for conservation, restoration, and resource use in a globally recognized biodiversity hotspot in southwestern Australia. We describe a variety of changes to key taxonomic groups and system-scale characteristics as a consequence of environmental change (climate and land use), and outline strategies for conserving and restoring important ecological and agricultural characteristics. Opportunities for conservation and economic adaptation are substantial because of gradients in rainfall, temperature, and land use, extensive areas of remnant native vegetation, the ability to reduce and ameliorate areas affected by secondary salinization, and the existence of large national parks and an extensive network of nature reserves. Opportunities presented by the predicted environmental changes encompass agricultural as well as natural ecosystems. These may include expansion of aquaculture, transformation of agricultural systems to adapt to drier autumns and winters, and potential increases in spring and summer rain, carbon-offset plantings, and improving the network of conservation reserves. A central management dilemma is whether restoration/preservation efforts should have a commercial or biodiversity focus, and how they could be integrated. Although the grand challenge is conserving, protecting, restoring, and managing for a future environment, one that balances economic, social, and environmental values, the ultimate goal is to establish a regional culture that values the unique regional environment and balances the utilization of natural resources against protecting remaining natural ecosystems
    • …
    corecore